COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter/B/;L

Large and Fast:
Exploiting Memory
Hierarchy

Memory Technology

Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM)

50ns — 70ns, $20 — $75 per GB
Magnetic disk

5ms — 20ms, $0.20 — $2 per GB
Ideal memory

Access time of SRAM

Capacity and cost/GB of disk
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Principle of Locality

Programs access a small proportion of
their address space at any time
Temporal locality

Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables
Spatial locality

Items near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data
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Taking Advantage of Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
Main memory

Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
rocessor
upper level

Hit: access satisfied by upper level

Hit ratio: hits/accesses
@ If accessed data is absent

Data is transferred Miss: block copied from lower level
TT Time taken: miss penalty
i | Miss ratio: misses/accesses
HHH =1 = hit ratio
——# Then accessed data supplied from
t upper level
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Cache Memory -

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X, ..., Xy, X,

X, X,
Xy Xy .
[ s How do we know if
the data is present?
Knoy Xnoy
% X, Where do we look?
%
X. Xy

. Before the reference to X, b. After the reference fo X,
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Direct Mapped Cache

Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

¥ 4 iCaene

#Blocks is a
power of 2
/TTRINITN Use low-order
" ‘ b il address bits
00001 00101 01001 O"wMamL,y| 10101 11001 MmN
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Tags and Valid Bits

—
How do we know which particular block is
stored in a cache location?
Store block address as well as the data
Actually, only need the high-order bits
Called the tag
What if there is no data in a location?
Valid bit: 1 = present, 0 = not present
Initially O
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Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
o1
100
101
110
1M1

Tag Data

Z|z|Zz|lz|z|Zz|2|Z2|<
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Cache Example

[ word addr | Binary addr | Hitimiss | Cache block |
| 22 [ qemo | Miss | aton |

Index
000
001

v Tag Data
N
N
010 N
N
N
N

o1
100
101

11 N
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Cache Example

[ wordaddr | Binary addr | Hitmiss | Cache block |

| 2 [ oo | wmiss | o010 |
Index v Tag Data

000 N

001 N

ot1 N

100 N

101 N

110 Y |10 Mem[10110]

111 N
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Cache Example
Word addr | Binary addr | Hitimiss | Cache block
22 [10y110 Hit 110
26 [T1010 Hit 010
=
Index vV Tag Data
000 N
001 N
LS- = 010 J ) Mem[11010]
o011 N
100 N
101 N
,L’], o e fo) Mem[10110]
111 N[
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Cache Example

[ wordaddr | Binary addr | Hitimiss | Cache block |

| 18 | dAaoto Miss 010 |
Index vV Tag Data
000 Yy |10 Mem[10000]
001 N
K 010 Y |10 Mem[10010]
ot1 Y oo Mem[00011]
100 N
101 N
110 Y |10 Mem[10110]
111 N

Cache Example
Word addr Binary addr Hit/miss | Cache block

16 10000 Miss 000
3 00011 Miss 011
16 10 000 Hit) 000

Index vV Tag Data

Vo
001 N
010 Y " Mem[11010]
by M

100 N

101 N

110 Y 10 Mem[10110]

11 N
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Address Subdivision

Address (showing bit positions)
3180 -+ 131211 2| {0

Byte
offset
" 20 10 ‘S
Hit
Tag 1 bi
Index D
Index  Valid Tag Data
0
1
2
1021
1022
1023
20 32
...
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Example: Larger Block Size

64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address =[1200/16] = 75
Block number = 75 modulo 64 = 11

31 109 4 3 0

\ Tag | Inclex | Offset \
22bits 6 bits 4 bits
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Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality
But in a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help
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Cache Misses

On cache hit, CPU proceeds normally
On cache miss
Stall the CPU pipeline_)
Fetch block from next level of hierarchy
Instruction cache miss
Restart instruction fetch
Data cache miss
Complete data access
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Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty
When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first
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Example: Intrinsity FastMATH

Embedded MIPS processor
12-stage pipeline
Instruction and data access on each cycle
Split cache: separate I-cache and D-cache
Each 16KB: 256 blocks = 16 words/block
D-cache: write-throlgh or m\) N
SPEC2000 miss rate *
l-cache: 0.4% D LL J{le%
D-cache: 11.4% § Le
Weighted average: 3.2% "
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Write-Through

On data-write hit, could just update the block in
cache

But then cache and memory would be inconsistent
Write through: also update memory
But makes writes take longer

e.g., if base CPl =1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPI=1 +0.1x100= 11
Solution: write buffer
Holds data waiting to be written to mem'ory
CPU continues immediately
Only stalls on write if write buffer is already full
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Write Allocation

What should happen on a write miss?
Alternatives for write-through
Allocate on miss: fetch the block

Write around: don't fetch the block

Since programs often write a whole block before
reading it (e.g., initialization)

For write-back
Usually fetch the block
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Example: Intrinsity FastMATH
s ¥lg~.1'[‘p]‘;}""’.’.’.“?;“';i;n;> Tkl (rige somuyt®e
b LS '% ‘?' =‘. aBFI)z:t |3§q’5b y'k Data.

Block offset

18 bits 512 bits
v Tag Data

258
e | e entries
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Main Memory Supporting Caches

Use DRAMs for main memory
Fixed width (e.g., 1 word)
Connected by fixed-width clocked bus
Bus clock is typically slower than CPU clock
Example cache block read
1 bus cycle for address transfer
F& 15 bus cycles per DRAM access
1 bus cycle per data transfer
For 4-word block (-word-widé)DRAM
Miss penalty = 1+ 4x15 + 4x1 =65 hus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

procosad Processar|

WYY

(o]
w [

e Momory || Mamory
‘ o Bank0 || sarey Hmz

i = 4-word wide memory
Miss penalty =1 + 15 + 1 =17 bus cycles
Bandwidth = 16 bytes / 17 ¢ycles = 0.94 Blcycle
= . 4-bank interleaved memory
memory organization Miss penalty =1 + 15 + 4x1 = 20 bus cycles
Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

—
Memory
kg
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Advanced DRAM Organization

Bits in a DRAM are organized as a
rectangular array

DRAM accesses an entire row

Burst mode: supply successive words from a
row with reduced latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges
Quad data rate (QDR) DRAM
Separate DDR inputs and outputs
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Cache Performance Example

Given

|-cache miss rate = 2%

D-cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) =@

Load & stores are 36% of'instructions
Miss cycles per instruction

I-cache: 0.02 x 100 = 2

D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI =2 + M= 5.44

Ideal CPU is 5.44/2 =2.72 times faster
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Measuring Cache Performance

Components of CPU time
Program execution cycles
Includes cache hit time
Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

Memory stallcycles

~ Memory accesses

xMiss ratexMiss penalty
Program

7Instructionsx Misses
Program Instruction

xMiss penalty
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Average Access Time

Hit time is also important for performance
Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example r—]
CPU with Mns clock, hit time = 1 cycle, miss
penalty =i 20 cycles, I-cache miss rate = 5%

AMAT =1 +0.05%x20=2ns
2 cycles per instruction
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Performance Summary

When CPU performance increased
Miss penalty becomes more significant
Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can't neglect cache behavior when
evaluating system performance
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Associative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)
n-way set associative
Each set contains n entries
Block number determines which set
(Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)
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Associative Cache Example

Direct mapped \ Set associative Fully associative

Block# 01234567 Set# 0 1 2 3

- m N ‘]

T~ T
| S

Tag

1
] Tag
Search i Search T 1 T

xI,J
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Spectrum of Associativity

For a cache with 8 entries

One-way set associative
(direct mapped)

Two-way set associative

[ o i

Four-way set associative
Set Tag Daia Tag Daia Tag Dala Tag Data
& T

1

Eight-way set associative (fully associative)
Tag Dasta Tag Dsfa Tag Data Tag Data Tag Data Tay Data Tag Data Tag Daia
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Associativity Example Odoo

Compare 4-block caches Jopo

Direct mapped, 2-way set associative, o
fully associative

Block access sequence: 0, 8,0, 6, 8

Direct mapped
Elock Cache Hitmiss Cache content attel access

address | index ] 1 2 6
0 0 miss
5 miss Mem([e]
0 [ miss Mem([0]
6 P miss Hem(0]
3 0 miss Mem([5] Wern[5]
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Associativity Example |,

ot
2-way set associative
Elock cache Hitmiss Cache content after access
address index Setd Set 1

0 0 miss ; )
El 0 miss M em[0]

0 1 hit Mem[0] | Mem[B]

6 0 miss Mem[0] _|MemED

El 1 Miss Mem[8] LEE]

Fully associative

Block HIwmisS Cache COntent arter access
address
0 miss
5 miss Wem|0]
] hit Mem[0] | Memg]
[ miss Mem[0] Mem[8]
3 hit Mem[0] Mem[8] Mem[&]
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Set Associative Cache Organization

Address
318021211 109823210

VTag Data ¥ Tag Data V Tag Oata V Tag Dot

(03 1l

(i-10-1 multipiexor)

Hit Data
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How Much Associativity

Increased associativity decreases miss
rate
But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Chapter 5— Large and Fast Exploiting Memory Hierarchy — 37

Replacement Policy

Direct mapped: no choice
Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set
Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity
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Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache
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Multilevel Cache Example

Given
CPU base CPI = 1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI=1+0.02 x 400=9
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_‘Me (cont.)

Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit

Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

Extra penalty = 500 cycles
CPI=1+0.02 x20+0.005 x 400=3.4
Performance ratio =9/3.4=2.6
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Multilevel Cache Considerations

Primary cache
Focus on minimal hit time
L-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact

Results
L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

Out-of-order CPUs can execute
instructions during cache miss
Pending store stays in load/store unit
Dependent instructions wait in reservation
stations
Independent instructions continue
Effect of miss depends on program data
flow
Much harder to analyse
Use system simulation
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Interactions with Software

Misses depend on
memory access
patterns
Algorithm behavior
Compiler
optimization for
memory access
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Virtual Memory
Use main memory as a “cache” for

secondary (disk) storage
Managed jointly by CPU hardware and the
operating system (OS)

Programs share main memory

Each gets a private virtual address space
holding its frequently used code and data

Protected from other programs
CPU and OS translate virtual addresses to
physical addresses

VM “block” is called a page

VM translation “miss” is called a page fault
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Address Translation

1 \0
Fixed-size pages (e.g., 4K) L7

Virtual addross

Viriual addresses. Physical addresses 3130292827 -+ ovoon 1514131211 1098 azi0

‘ Vo page ummber [ posmaten

=)

202827 wrrvigere 1514131211 1098 oo 3210

‘ Physical page number Page offsat

Physical address
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Page Fault Penalty

On page fault, the page must be fetched
from disk

Takes millions of clock cycles

Handled by OS code
Try to minimize page fault rate

Fully associative placement

Smart replacement algorithms
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Translation Using a Page Table

\ Paga i ot ]

Virtual address
31 30 28 28 2T 15 14 13 12 11109 8 w3 21 0

Vitual page number Page afsat ‘
20 2
Vaid Physical page number

Page table

ie

1t 0 then page s not
prasent in momory

29 28 27w 18 14 1312 11 109 83 2 1.0

Physical page number Page offset

Physical aderess

Page Tables

Stores placement information
Array of page table entries, indexed by virtual
page number
Page table register in CPU points to page
table in physical memory

If page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, ...)

If page is not present

PTE can refer to location in swap space on
disk
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ing Pages to Storage

Virtual page
number
Page table

Physical page of Physical memory
Valid disk address
—
— —
= ]
oz
i Disk storage
= _ Dickstorage
L e =
S —
[E—
e
P i
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Replacement and Writes

To reduce page fault rate, prefer least-
recently used (LRU) replacement
Reference bit (aka use bit) in PTE setto 1 on
access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been
used recently
Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written
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Fast Translation Using a TLB

Address translation would appear to require
extra memory references
One to access the PTE
Then the actual memory access
But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100
cycles for miss, 0.01%—-1% miss rate

Misses could be handled by hardware or software
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e
Virtual page Physical page
number_Valid Dirty Re! Tag address
— |
> Physical memory
Page table
Physical page
or disk address =
0 -—
Ll
1 - /D_isk storage
= —
[o] —_—
v 7 [E——
MR ] - B
I s E——
o L | (—
ENERER| :
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TLB Miss Handler

TLB miss indicates
Page present, but PTE notin TLB
Page not preset
Must recognize TLB miss before
destination register overwritten
Raise exception
Handler copies PTE from memory to TLB
Then restarts instruction
If page not present, page fault will occur
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TLB and Cache Interaction

If cache tag uses
physical address
Need to translate
hefore cache lookup
Alternative: use virtual
address tag
Complications due to
aliasing
Different virtual

addresses for shared
physical address
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TLB Misses

If page is in memory
Load the PTE from memory and retry
Could be handled in hardware

Can get complex for more complicated page table
structures

Or in software
Raise a special exception, with optimized handler
If page is not in memory (page fault)
OS handles fetching the page and updating
the page table
Then restart the faulting instruction
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Page Fault Handler

Use faulting virtual address to find PTE
Locate page on disk
Choose page to replace

If dirty, write to disk first
Read page into memory and update page
table
Make process runnable again

Restart from faulting instruction
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The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching
At each level in the hierarchy

Block placement

Finding a block

Replacement on a miss

Write policy
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Block Placement

Determined by associativity
Direct mapped (1-way associative)
One choice for placement

n-way set associative
n choices within a set

Fully associative
Any location
Higher associativity reduces miss rate
Increases complexity, cost, and access time
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Replacement

Choice of entry to replace on a miss
Least recently used (LRU)
Complex and costly hardware for high associativity
Random
Close to LRU, easier to implement
Virtual memory
LRU approximation with hardware support
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Sources of Misses

Compulsory misses (aka cold start misses)
First access to a block
Capacity misses
Due to finite cache size
A replaced block is later accessed again
Conflict misses (aka collision misses)
In a non-fully associative cache
Due to competition for entries in a set

Would not occur in a fully associative cache of
the same total size
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Finding a Block

Associativity

Location method

Tag comparisons

Direct mapped

Inclex

1

n-way set
associative

Set index, then search |n
entries within the set

Fully associative

Search all entries

#entries

Full lookup table

0

Hardware caches
Reduce comparisons to reduce cost
Virtual memory
Full table lookup makes full associativity feasible
Benefit in reduced miss rate
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Write Policy

Write-through
Update both upper and lower levels
Simplifies replacement, but may require write

buffer
Wirite-back

Update upper level only

Update lower level when block is replaced

Need to keep more state
Virtual memory

Only write-back is feasible, given disk write

latency
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Cache Design Trade-offs

Design change

Effect on miss rate

Negative performance
effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict
misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.
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Concluding Remarks

Fast memories are small, large memories are
slow

We really want fast, large memories &
Caching gives this illusion ©
Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy

L1 cache < L2 cache & ... & DRAM memory
< disk

Memory system design is critical for
multiprocessors
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