

Principle of Locality

- Programs access a small proportion of their address space at any time
- Temporal locality
 - Items accessed recently are likely to be accessed again soon
 - e.g., instructions in a loop, induction variables
- Spatial locality
 - Items near those accessed recently are likely to be accessed soon
 - E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

MK

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag
- What if there is no data in a location?
 - Valid bit: 1 = present, 0 = not present
 - Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Example

- 8-blocks, 1 word/block, direct mapped
- Initial state

MK

Index	٧	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

Word	addr	Binary	addr	Hit/miss	Cache block
2	2	101	10	Miss	110
000	N		_		
Index	V	Tag	Dat	а	
	_				
001	N				
010	N				
010 011	N				
011	N				
011 100	N N	10	Me	m[10110]	

Block Size Considerations ■ Larger blocks should reduce miss rate ■ Due to spatial locality ■ But in a fixed-sized cache ■ Larger blocks ⇒ fewer of them ■ More competition ⇒ increased miss rate ■ Larger blocks ⇒ pollution ■ Larger miss penalty ■ Can override benefit of reduced miss rate ■ Early restart and critical-word-first can help

Cache Misses

- On cache hit, CPU proceeds normally
- On cache miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write-Through

- On data-write hit, could just update the block in cache
- But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
- When a dirty block is replaced
 - Write it back to memory
 - Can use a write buffer to allow replacing block to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Write Allocation

- What should happen on a write miss?
- Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
 - Usually fetch the block

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 21

Example: Intrinsity FastMATH

- Embedded MIPS processor
 - 12-stage pipeline
 - Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
 - Each 16KB: 256 blocks × 16 words/block
 - D-cache: write-through or write-back
- SPEC2000 miss rates
 - I-cache: 0.4%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Advanced DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
- Quad data rate (QDR) DRAM
 - Separate DDR inputs and outputs

MK

MK

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Measuring Cache Performance - Components of CPU time - Program execution cycles - Includes cache hit time - Memory stall cycles - Mainly from cache misses - With simplifying assumptions: Memory stall cycles - Memory accesses - Wiss rate Miss penalty - Instructions - Program - Misses - Instruction Misses - Instruction Misses - Chapter 5 – Large and Fast: Exploiting Memory Hierarchy – 28

Cache Performance Example Given I-cache miss rate = 2% D-cache miss rate = 4% Miss penalty = 100 cycles Base CPI (ideal cache) = 2 Load & stores are 36% of instructions Miss cycles per instruction I-cache: 0.02 × 100 = 2 D-cache: 0.36 × 0.04 × 100 = 1.44 Actual CPI = 2 + 2 + 1.44 = 5.44 Ideal CPU is 5.44/2 = 2.72 times faster

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 29

I-miss: 2%
D-miss: 4%
Penalidule: loo cidos
CPI base: 2
LD/ST: 36%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Performance Summary

- When CPU performance increased
 - Miss penalty becomes more significant
- Decreasing base CPI
 - Greater proportion of time spent on memory stalls
- Increasing clock rate
 - Memory stalls account for more CPU cycles
- Can't neglect cache behavior when evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Associative Caches

- Fully associative
 - Allow a given block to go in any cache entry
 - Requires all entries to be searched at once
 - Comparator per entry (expensive)
- n-way set associative
 - Each set contains n entries
 - Block number determines which set
 (Block number) modulo (#Sets in cache)
 - Search all entries in a given set at once
 - n comparators (less expensive)

MK

MK

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing returns
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000
 - 1-way: 10.3%2-way: 8.6%4-way: 8.3%
- 8-way: 8.1%

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 37

Replacement Policy

- Direct mapped: no choice
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose among entries in the set
- Least-recently used (LRU)
 - Choose the one unused for the longest time
 Simple for 2-way, manageable for 4-way, too hard beyond that
- Random
 - Gives approximately the same performance as LRU for high associativity

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 39

Multilevel Caches

- Primary cache attached to CPU
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 40

Multilevel Cache Example

- Given
 - CPU base CPI = 1, clock rate = 4GHz
 - Miss rate/instruction = 2%
 - Main memory access time = 100ns
- With just primary cache
 - Miss penalty = 100ns/0.25ns = 400 cycles
 - Effective CPI = 1 + 0.02 × 400 = 9

MK

Example (cont.)

- Now add L-2 cache
 - Access time = 5ns
 - Global miss rate to main memory = 0.5%
- Primary miss with L-2 hit
 - Penalty = 5ns/0.25ns = 20 cycles
- Primary miss with L-2 miss
 - Extra penalty = 500 cycles
- CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
- Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Multilevel Cache Considerations

- Primary cache
 - Focus on minimal hit time
- L-2 cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact
- Results
 - L-1 cache usually smaller than a single cache
 - L-1 block size smaller than L-2 block size

MK

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Interactions with Advanced CPUs

- Out-of-order CPUs can execute instructions during cache miss
 - Pending store stays in load/store unit
 - Dependent instructions wait in reservation stations
 - Independent instructions continue
- Effect of miss depends on program data flow
 - Much harder to analyse
 - Use system simulation

Chapter 5 — Large and Fast Exploiting Memory Hierarchy —

Interactions with Software Misses depend on

 Misses depend on memory access patterns

 Compiler optimization for memory access

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 45

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses
 - VM "block" is called a page
 - VM translation "miss" is called a page fault

MK

Page Fault Penalty

- On page fault, the page must be fetched from disk
 - Takes millions of clock cycles
 - Handled by OS code
- Try to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms

Chapter 5 — Large and East Exploiting Memory Hierarchy —

Page Tables

- Stores placement information
- Array of page table entries, indexed by virtual page number
- Page table register in CPU points to page table in physical memory
- If page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Replacement and Writes

- To reduce page fault rate, prefer leastrecently used (LRU) replacement
 - Reference bit (aka use bit) in PTE set to 1 on access to page
 - Periodically cleared to 0 by OS
 - A page with reference bit = 0 has not been used recently
- Disk writes take millions of cycles
 - Block at once, not individual locations
 - Write through is impractical
 - Use write-back
 - Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Fast Translation Using a TLB

- Address translation would appear to require extra memory references
 - One to access the PTE
 - Then the actual memory access
- But access to page tables has good locality
 - So use a fast cache of PTEs within the CPU
 - Called a Translation Look-aside Buffer (TLB)
 - Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate
 - Misses could be handled by hardware or software

TLB Misses

- If page is in memory
 - Load the PTE from memory and retry
 - Could be handled in hardware
 - Can get complex for more complicated page table structures
 - Or in software
 - Raise a special exception, with optimized handler
- If page is not in memory (page fault)
 - OS handles fetching the page and updating the page table
 - Then restart the faulting instruction

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 55

TLB Miss Handler

- TLB miss indicates
 - Page present, but PTE not in TLB
 - Page not preset
- Must recognize TLB miss before destination register overwritten
 - Raise exception
- Handler copies PTE from memory to TLB
 - Then restarts instruction
 - If page not present, page fault will occur

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 56

Page Fault Handler

- Use faulting virtual address to find PTE
- Locate page on disk
- Choose page to replace
 - If dirty, write to disk first
- Read page into memory and update page table
- Make process runnable again
 - Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

The Memory Hierarchy

The BIG Picture

- Common principles apply at all levels of the memory hierarchy
 - Based on notions of caching
- At each level in the hierarchy
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Block Placement

- Determined by associativity
 - Direct mapped (1-way associative)
 - One choice for placement
 - n-way set associative
 - n choices within a set
 - Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Increases complexity, cost, and access time

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 61

Finding a Block

Associativity	Location method	Tag comparisons
Direct mapped	Index	1
n-way set associative	Set index, then search entries within the set	n
Fully associative	Search all entries	#entries
	Full lookup table	0

- Hardware caches
 - Reduce comparisons to reduce cost
- Virtual memory
 - Full table lookup makes full associativity feasible
 - Benefit in reduced miss rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Replacement

- Choice of entry to replace on a miss
 - Least recently used (LRU)
 - Complex and costly hardware for high associativity
 - Random
 - Close to LRU, easier to implement
- Virtual memory
 - LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Write Policy

- Write-through
 - Update both upper and lower levels
 - Simplifies replacement, but may require write buffer
- Write-back
 - Update upper level only
 - Update lower level when block is replaced
 - Need to keep more state
- Virtual memory
 - Only write-back is feasible, given disk write latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Chapter 5 — Large and Fast Exploiting Memory Hierarchy — 65

Cache Design Trade-offs

Design change	Effect on miss rate	Negative performance effect
Increase cache size	Decrease capacity misses	May increase access time
Increase associativity	Decrease conflict misses	May increase access time
Increase block size	Decrease compulsory misses	Increases miss penalty. For very large block size, may increase miss rate due to pollution.

MK

Concluding Remarks

- Fast memories are small, large memories are
 - We really want fast, large memories ⊗■ Caching gives this illusion ⊚
- Principle of locality
 - Programs use a small part of their memory space frequently
- Memory hierarchy
 - L1 cache ↔ L2 cache ↔ ... ↔ DRAM memory ↔ disk
- Memory system design is critical for multiprocessors

