Chapter 2

C@”‘J“‘Jﬂ 6‘{ I"‘Q{N(T;(g Mﬂi{(:uj

)
1eS &

1

o0 Horgam Kaman Bublkien

Instructions:

Language of the Machine

We'll be working with the MIPS instruction set architecture
- similar to other architectures developed since the 1980's
— Almost 100 million MIPS processors manufactured in 2002 l'/
— used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, ...

O other

M sPeRC

1200 M Hitachi 5H
1100 B PowsrPe

[wotoroia 6K
W mrs

@0 [Hinz

o apm

[Trr—
E

2

ol Mo bt an P lers

MIPS arithmetic

223k

Géé al, E’i
[“J'I]

+ Allinstructions have 3 operands
« Operand order is fixed (destination first)

Example:
C code:
MIPS ‘code’:
{we’ll talk about registers in a bit)
“The natural ber of op ds for an operation like ition is

three...requiring every instruction to have exactly three operands, no
more and no less, conforms to the philosophy of keeping the
—_ "

ardware simple”
s
L —

MIPS arithmetic

v
w
Design Principle: Eimplicity favors regularity. ?-P

Of course this complicates some things... @L
\Ccnde: a=b+c+d

MIPS code: add a, b, ¢ j
add a, d7 %\’

a, 0.

Operands must be registers.@n registers provided
Each register contains 32 bits

Design Principle: smaller is fastef. Why?

4

ol Mo bt an P lers

o0t o bt Pk S
Registers vs. Memory
- Arithmetic instructions operands must be registers,
— only 32 registers provided
- Compiler associates variables with registers
+ What about programs with lots of variables
/
Control Tuput
Memory
Datapath Output
)
Processor 1o
5

o0 Horgam Kaman Bublkien

Lik| &
ol [Y 4 ST
—) %,ﬁ
-, ¥ ‘

Memory Organization

Viewed as a large, single-dimension array, with an address.
A memory address is an index into the array
"Byte addressing" means that the index points to a byte of memory.

8 ite of data

8his of data [gfz-

8his of data

8hite of data

bk W = O

(28
8hils of data z\(‘\'ﬁ

6 | 8hitsof data

== e)

o 0¢ y lo N
Memory Organization O\\Ih—r—f/]

Bytes are nice, but most data items use larger "words" 0@ ﬂ{O
For MIPS, a word is 32 bits or 4 bytes. OOO {

\\ 0 [2hitsofaata O 010

N 4 | 32bitsofdata —
011

/ 0Jpolod
2% bytes with byte addresses from 0 to 2721

2% words with byte addresses 0, 4, 8, ... 2°74 O l,o |
Words are aligned H
i.e., whatare the least 2 significant bits of a word address?

osp 4

R gisters hold 32 bits of dataO

"= 17 | Rbitsofdata

7

ol Mo bt an P lers

L —
Instructions lw - (m; WQ{L
Load and store instructions Ll ~ $ Sl
Example: \l, ﬂf ~ Sgg
C code: + (&
MIPS code:

al
s

U, 5527
w $t0, 48(§s3)

Can refer to registers by name (e.g., $s2, $t2) instead of number
Store word has destination last
Remember arithmetic operands are registers, not memory!

><:an-|wn'te: add M, §s2, 3%

o0 Horgam Kaman Bublkien

8

< ¢

MEM[$S% PI‘IQ] = ${@
c— |

AL)

ol (452) 4

S41C

—_—

-y
Qéé A3
! L,\'_,_/

(= MEN [12k ek |

Our First Example

swap (int]
{ int temp
temp =
Ikl =

v[EA];

£ < vl
blo &y D

So far we've learned:

-+ MIPS ’/

— loading words but addressing bytes
— arithmetic on registers only

+ Instruction Meaning
add $sl, $s2, $s3 §s1 = $s2 + $s3
sub $sl, $s2, §s3 $sl = §s2 - §s3
1w §s1, 100($s2) $s1 = Memory [$s2+100]
sw $s1, 100 ($s2) Memory [$s2+4100] = $s1

Add €1 %S, J_\s
-3

o0 Horgam Kaman Bublkien

P
T —
(Iﬁ:hine Language J
—
- Instructions, like registers and words of data, are also 32 bits\Jong
- Example: add) $sl, s/sg
- registers have numbers, $t1=9, $s1=17, $s2=18
- Instruction Format:
1=
[000000[10001] 10010] 01003] (00000 100000 |
— i Py
[Zop)] xs | «t| xd] shamt| funct)
(g — —
[S
* Can yon gitess what the field names stand for?
Nl et
YN
[ETr———

Machine Language

- Consider the load-word and store-word instructions, /
— What would the regularity principle have us do?
=32 - New principle: Good design demands a compromise
+ Introduce a new type of instruction format
— I-type for data transfer instructions
— other format was R-type for register
- Example: 1w $t0, 32 ($s2)

[3] 18 [o [3 |
—
[op] rs | rt [16 bit number |

é- g i %‘)
+ Where's the compromise? ’\U iv—‘t [mw ($[S
Sy drt ' w{ $rs 0

oot mora varman Bbiken

Stored Program Concept

- Instructions are bits
+ Programs are stored in memeory
— to be read or written just like data

memory for data, programs,

compilers, editors, etc.
Processor | Memory / pilers, »

« “Fetch 8 Execute Cycle
— Instructions are fetched and put into a special register
- Bits in the register "control” the subsequent actions
— Fetch the “next” instruction and continue

13

ol Mo bt an P lers

Control

- Decision making instructions
— alter the control flow,
- i.e., change the "next" instruction to be executed

- MIPS diti I branch instructi H /é%i"i—,[
bne $t0, $tl, Label ‘Mﬂ
beq $t0, $tl, Label L 5 g I
- Example: if (i==3) h =i + 3;
Tige g

bne $s0, $sl, Label
add $s3, $s0, §sl

Control
+ MIPS unc diti | branch instr
j label
- Example: L ,\
if (ir=3) beq $s4, $s5, Labl rw
heit3; add 53, $s4, $s5 o
else 3 Lab2 -
h=i-3j; o Labl: sub §s3, $s4, §s5
Lab2: ... “’&S&

=

« Canyou build a simple_for loop?

15

et Harga b an

Label:
et ma aman v 14
So far:
+ Instruction Meaning
add $s1,$s2,$s53 §sl = §s2 + §s3
sub $sl1,%s2,$s3 $sl = §s2 - $s3
1w $s1,100 (§s2) $sl = Memory [$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $sl
bne $s4,$s5 L Next instr. is at Label if $sd4 # $s5
beq $s4,%s5,L Next instr. is at Label if §s4 = $s5
j Label Next instr. is at Label
+ Formats:
R ‘ op | rs | rt \ rd shamt functl
I op | rs | rt ‘ 16 bit address |
J ‘ op | 26 bit address |
16

o0 Horgam Kaman Bublkien

Control Flow %—W

7

+ We have: beq, bne, what about Branch-if-less-than?
+ New instruction:

if $sl < $s2 then
$t0 = 1
slt $t0, §s1, $s2 else
bwe ‘W?(\%m} LQL& §t0 = 0
- Canusethis instruction to build "blt $s1, $s2, Label" @@=
— c¢an now build general control structures

+ Note that the assembler needs a register to do this,
— there are policy of use conventions for register:

i’,}()m :g

17

ol Mo bt an P lers

Policy of Use Conventions

Name |Register number| Usage
Szero 0 the constant value 0
Sv0-$vl 23 values for results and expression evaluation
$a0-5a3 4-7 arguments
$t0-5t7 815 terporaries
$s0-$s57 16-23 saved
5t8-$t9 24-25 more terrporaries
Sgp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

18

o0 Horgam Kaman Bublkien

Constants

- Small constants are used quite frequently (50% of operands)
e.g., A=A+5;
BE=B+1:
c=C-13;
+ Solutions? Why not?
— put 'typical constants' in memory and load them.
— create hard-wired registers (like $zero) for constants like one.

+ MIPS Instructions:
addi $29, $29, 4
slti §8, $18, 10
andi $29, $29, 6
ori 529, $29, 4

- Design Principle: Make the common case fast. Which format?

ol Mo bt an P lers

19

How about larger constants?

- We'd like to be able to load a 32 bit constant into a register
+ Must use two instructions, new "load upper immediate” instruction

lui $t0, 1010101010101010

p—
1010101010101010 | 0000000000000000 ‘

_ filled with zeros

+ Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

[1010101010101010 | 0v000v0o000oonoo |

‘ 0000000000000000 | 1010101010101010 ‘

rfﬂTmTﬂTﬂTﬂTﬂTﬂ—rfﬂTﬂTﬂTmnTﬂT

ori

20

o0 Horgam Kaman Bublkien

Assembly Language vs. Machine Language

- Assembly provides convenient symbolic representation
— much easier than writing down numbers
- e.g., destination first
+ Machine language is the underlying reality
- e.g., destination is no longer first
+ Assembly can provide 'pseudoinstructions’
— &.g. “move $t0, $t1” exists only in Assembly
— would be implemented using ““add $t0,$t1,$zero™
+ When considering performance you should count real instructions

Other Issues

- Di d in your y progr ing lab:
support for procedures
linkers. loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions
+ Some of these we'll talk more about later

- We'll talk about compiler optimizations when we hit chapter 4.

22

o0 Horgam Kaman Bublkien

P 21
Procedimentos
+ Passos a serem executados pelo programa:
1. Colocar os parametros em um lugar onde o procedimento
consegue recebe-los
2. Transferir o controle para o procedimento
3. Alocarr para o pr i
4. Executar o procedimento
5. Colocar os resultados em um lugar onde o programa possa
acessar
6. Retornar ao ponto seguinte da ch da do pro
* Novidades
— Instrugéo jal chama o procedimento
— Instrugéo jr retorna do procedimento
— Registrador $ra contém o valor de retorno
23

ol Mo bt an P lers

Pilha

+ Utiliza o registrador $sp e $fp (em alguns casos)
+ Cresce do endereco alto para o enderego baixo

- Utilizada para guardar valores, variaveis locais e
passagem de parametros extras

High address
S0 ‘ ‘ $o ‘ ‘
Contents of register $t1
Contents of register $10
$ep - | Contents of register $s0
Low address a. b. e
oot o vaman e 24

Exemplo

int fact (int n)
{
if (n < 1)
return 1;
else

return (n * fact(n - 1);

Exercicio 2.29

Coloque comentarios no coédigo MIPS abaixo e descreva em uma
frase o que ele computa. $al e $al séo usados como entrada e
contém, respectivamente, os inteiros a e b. $v0 é usado como saida.

add $t0, $zero. $zero
loop: beq $al, $zero, finish
add $t0, $t0. $a0
sub $al, $al, 1
j loop
finish: addi $t0, $t0. 100
add $v0, $t0, $zero

et ma aman v 26

Caracteres

+ Representacao ASCIl x Unicode
- Representagées para strings
1. Primeiro caracter indica o tamanho da string

2. Uma variavel acompanha a string indicando seu
tamanho (como numa estrutura)

3. A string termina com um caracter reservado
— Instrugdes

— Byte: Ib e sb (8 bits)

- Halfword: Ih e sh (16 bits)

et ma aman v 28

P —
Organizacido da Memoria
$sp — 7fff fffcg, Stack
Dynamic data
$gp 1000 8000y, Static data
1000 00004,
Text
pe —= 0040 0000,
Reserved
0
Prnp———-
Overview of MIPS
simple instructions all 32 bits wide
very structured. no unnecessary baggage
only three instruction formats
R | op \ Es ‘ rt | rd | shamt‘ funct ‘
1 | op ‘ rs ‘ rt | 16 bit address ‘
J | op ‘ 26 bit address ‘

rely on compiler to achieve performance
— what are the compiler's goals?
help compiler where we can

[—-

Addresses in Branches and Jumps

+ Instructions:
bne $t4,$t5, Label Next instruction is at Labelif $t4 #5t5

beqg $t4,$t5 Label Next instruction is at Labelif $t4 =
$t5
j Label Next instruction is at Label

- Formats:
I liop | rs rt 16 bit address ‘

3 | op | 26 bit address ‘

- Addresses are not 32 bits
— How do we handle this with load and store instructions?

Addresses in Branches

+ Instructions:

bne $td4,5t5,Label Next instruction is at Label if $t4=$t5
beq $td,$t5,Label Next instruction is at Label if $t4=$t5

+ Formats:

I ‘ op ‘ s | rt ‘ 16 bit address ‘

+ Could specify a register (like Iw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local {principle of locality)

+ Jump instructions just use high order bits of PC
- address boundaries of 256 MB

T —
To summarize:
WS operncs
T
; [T EeTe—
. o et e
fon amp szes ks
Memoni0) By 4 ianshr siutions. MIPS vees Byteaddmsses, %0
|2* memary |Memeris: |secu ezt wors: amer ey 4 Memon nois o3 Snustures, suoh 38 aEs,
sz e oo e v o o o e
MIPS assembly bnguage
o = — e
= S, see. S [WL et 3 [rmeomarcs oms ngeen
eomerc [rea o I PP P R [e e
T T
FTe e o e
P STrrr—
R £ o s e
m i n 15 o g mnay
[T e wamer e
e ot Fam
e T
Eoam T
T T e
oo
e =
rons. s o oromn s s
iotume s me T — 12
Passos para criar um programa
C program
Y
[Obtect: Machine tangusge mocule | [Oblect: Library routine (machine language)
Y
| Executable: Machine language program
34

o0 Horgam Kaman Bublkien

-
© s —
(o[e[e]
]
W [[=] [== g
[e]
2 Bmesm—y
(][] ==]
[e] ®
o m——
([] e]
[3] &
= P
[=]
‘
cxmnt o v 33
Exemplos de cdédigo
if (x==10) while (x> 7)
a=5b X =
else
b=T7
switch (x) { 0; 1< 100;i+=2)
case0:a=5;
break;
case1:b=T7;
case2:¢=8;
break;
default: a=9;
}
35

ol Mo bt an P lers

Alternative Architectures

« Design alternative:
— provide more powerful operations

— goalis to reduce ber of instr
— dangeris a slower cycle time and/or a higher CPI
~“The path taward aperation camplexity is s fraught with peril.

To avoid these problems, designers have moved toward simpler
instructions”

+ Let's look {briefly} at 1A-32

36

o0 Horgam Kaman Bublkien

IA - 32

+ 1978: The Intel 8086 is announced (16 bit architecture)

- 1980: The 8087 floating point coprocessor is added

+ 1982: The 80286 increases address space to 24 bits, +instructions

+ 1985 The 80386 extends to 32 bits, new addressing modes

+ 1989-1995: The 80486, Pentium, Pentium Pro add afew instructions
{mostly designed for higher performance)

+ 1987: 57 new “MMX" instructions are added, Pentium ||

+ 1999: The Pentium Il added another 70 instructions (SSE)

+ 2001: Another 144 instructions (SSE2)

< 2003: AMD extends the architecture to increase address swace to 64 bits,
widens all registers to 64 bits and other changes (AMD64)

+ 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds
more media extensions
+ “This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult te explain and impossible to love”

37

ol Mo bt an P lers

IA-32 Overview

- Complexity:
— Instructions from 1 to 17 bytes long
- one operand must act as both a source and destination
— one operand can come from memory
— complex addressing modes
e.g., “base or scaled index with 3 or 32 bit displacement”
- Saving grace:

- the most frequently used instructions are not too difficult to
build

— compilers avoid the portions of the architecture that are slow

“alat the $0x36 lacks in style is made wp in quantity,
making it beanttiful from the right perspective”

38

o0 Horgam Kaman Bublkien

IA-32 Registers and Data Addressing

+ Registers in the 32-bit subset that originated with 80386
Name Use
31

0

Eax PR O
Ecx PR 1
Eox eRz
Ex PR
Esp PR 4
3 PR S
Esl PR G
enl PR 7
cs Cads segment painter
ss Stack segment pointer (op of s13ck)
0s Data segment pointer 0
€s Data seqment pointer 1
Fs Data segmant pointer
s Dta zegment pointar @

e ntruction pointer (P
ErLacs Condtion codss et momm b an puer S0

IA-32 Register Restrictions

- Registers are not ““general purpose” — note the restrictions below

Nt ESP of EBP

oL ESP or EBP Tw 350, 10003) 7
#displaceme

Ro@stef Indirect

Based mode with 6-0f 3201
displacement

Base DIUS SCAk INdex The address Is Base: any GPR mul
Basi + (259 x Indix) Ingx UESP | add 51
where Scale has the value 0, 1, 2, of 3.)
Basé plus scaled Index with The address Is Base: any GPR mul 352
£ 07 3201 displacement Base + (2599 x Inax) + dlsplacement Index: not ESP | 3dd $t0, 810,451
Wieeo Scale s e Vaiue 0, 1, 2,01 3, v 450, 1000410) #<16-bit

isplace

FIGURE 2.42 1A-32 32:hit addressing modes with register restrictions and the ecuivalent MIPS code, The Base plus Scoled Index
addressing mecde, not found in MIFS or the Fower PC. isincluded to avoid the multiplies by four (scale factor of 2) toturn an index in a register into »
byte sddress (se2 Figures 234 and 236). A seale factor of | is used for 16-bit dats, and a scal¢ factor of 3 for 64-bit data, Scale factor of 0 means the
address is mot scaled. 1 the displacement is longer than 16 bits in the sacond o fourth mades, then the MIPS squivalent mods weuld need two more

lead th 16 bits of ths displacs dan 330 to sum the upper acdress with the base register $5 1. (Intel gives o dif-
ferent names to what is called Based addressing mods d and Indexed—but they are and

40

oo Howga 1,

IA-32 Typical Instructions

Four major types of integer instructions:
— Data movement including move, push, pop
— Arithmetic and logical (destination register or memory)
— Control flow (use of condition codes / flags)
— String instructions, including string move and string compare

iostruction____[Funetion |
3t namo
WP e
CALL noms SP-5h-4; ISP I-EIPS ETPemame:
MOVW EBX, [EDI+45) EBX=M[EDI+45]
PUSH EST SP=SP-4: M[SP)=ESI
0P cor EOT-NSPT; SP-5p14
(NTYRTT: A EAV6TES
oSt cun. 942 SeCeonaRoon 6038 (1G9 W EOX 1 47
(El T s

R s

FIGURE 243 Somo typical 1A-32 instructions and their functions. A list of frequent operstions
appears n Figure 2.44. The CALL saves the EIP o the next instruction on the stack. (EIP i the Intel PC.)

ocxat Horga Vattan P

IA-32 instruction Formats

- Typicalformats: (notice the different lengths)
P pre——
v

e

cAw
[

o one

cMOY EIXEN
!

.
CaTeraE=m

e
Pl
(ot [

£.ADD EAX ABIES
Coah

[wan s]

+TEST EDX, M2
LR

[s e e

42

o0 Horgam Kaman Bublkien

Summary

- Instruction plexity is only one

— lower instruction count vs. higher CPI/ lower clock rate
- Design Principles:

— simplicity favors regularity

— smaller is faster

— good design demands compromise

— make the common case fast
- Instruction set architecture

— a very important abstraction indeed!

ol Mo bt an P lers

43

