Chapter Five
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The Processor: Datapath & Control

+ We'reready to look at an implementation of the MIPS

+  Simplified to contain only:
- memory-reference instructions:1%, (&
— arithmetic-logical instructi ; add, sub, and, or, slt
— control flow instructiofis: ¢gbeq /.3

+ Generic Implementation:

— use the program counter{PC)to supply instruction address
- get the instruction from memory LVEL
- read regi Buj sf]$2/
gisters
- usethe instruction to decide exactly what to do
+  Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?
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More Implementation Details
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+ Abstract / Simplified View:

s

Ly

Register #

Thstruction
memnry

Data

Two types of functional units:
— elements that operate on data values (combinational)
- elements that contain state (sequential)
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State Elements

- Unclocked vs. Clocked
+ Clocks used in synchronous logic
- when should an element that contains state be updated?

Falling edge

|

Our Implementation

-\ An edgetriggered methodology

« Typical execution:
- read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

X y State

element
2

State
element

Clock cycle J J
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WH@“{SK period Rising edge
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Do vouunderstand? What is the “Mux” above?
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Abstraction

+  Make sure you understand the abstractions!
+ Sometimes it is easy to think you do, when you don’t
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Simple Implementation
+ Include the functional units we need for each instruction
34/ Instruction
|
address 1
% N 37
Instruction > PC
Instruction —
memory
a. Instruction memory b.Program counter c.Adder
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Simple Implementation

+ Include the functional units we need for each instruction

Read ALU operation
register 1 FS Read %rl’
_\_, —
Register Read r{. data 1
numbers register 2
» Data
Write Fleg\sters ‘31
register f Read
. data 2 [\
Data < Write
L Data

‘ RegWrite

a.Registers FS , rt/ ré b ALU
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Register File
» Note: we still use the real clock to detérmine when to write
T Wi
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FRegister data \

Simple Implementation

+ Include the functional units we need for each instruction
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:16 Sign
,51, Data extend
& Write memory
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a. Data memory unit b. Sign-extension unit
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Building the Datapath
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Control

+ Selecting the operations to perform (ALU, read/write, etc.)
+ Controlling the flow of data {multiplexor inputs)

+ Information comes from the 32 bits of the instruction

+  Example:

» add $8, $17, $18 Instruction Format:

[000000] 10001] 10010] 01000] 00000100000 =

| op | rs I rt I xd Ishamtl funct‘

- “ALU's operation based on instruction type and function code

et ma v veis 17

Control

- e.g., what should the ALU do with this instruction
Example: Iw$1, 100($2)

[ 3

2 [ 1 [ 100

[ _opl

s | it | 16 bit offset

- ALU control input

0000
0001
0010
0110
0111
1100

AND

OR

add

subtract
set-on-less-than
NOR

- Why s the code for subtract 0110 and not 00112

e ——

Control

- Must describe hardware to compute 4-bit ALU control input
— given instruction type

=W sw T~ sppop
01.= beq.

10 = arithmetic
— function code for arithmetic

computed from instuction type

+ Describe it using a truth table (can turn into gates):

o o x| % x| X [ T

i ) x [ [ x [ x % )
B x x [x[olo 0 G010
B X [ x[ oo O G110
B X T x o1 0 G0
B x X [ x [0 |1 v Goo1
B X ¥ [x 1l 0 Gan

FIGURE 513 The truth table for the three ALU control bits (called Operation). The inpurs
hich the ALLY a
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beq X 0 0 0 0 1 0 1
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Control

+ simple combinational logic {truth tables)
s

Our Simple Control Structure

« All of the logic is combinational
+  We wait for everything to settle down, and the right thing to be done
= ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
- cycle time determined by length of the longest path

State State
elerment Combinational logic element
1 2

Clock tycle J |—|7

e are ignoring some dewils like setup and hold times
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Single Cycle Implementation (W $|'t90( )
- € cycle time i igible delays except:

— memory {200ps), ALU and adders {100ps), register file access (50ps)

1 odd = oy

U

{
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o o M=
PC address register ! Read I M emiite
Read data 1 6_0
- nstruc register 2 MemtoReg 27
nertion o Regiters maag| | MY | Red | -
| iite deta 2 [T resilt dta " =
nstruction register M| = M
r e i
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100 i w2 |
Redgwirite /— dal‘: memary
[ \ = MemRead
| extend |
N/ FERTE A—-E ]
Multicycle Approach

- We will be reusing functional units
— ALU used to compute address and to increment PC
— Memory used for instruction and data

+  Our control signals will not be determined directly by instruction
— e.9., what should the ALU do for a “subtract” instruction?

+  We'll use afinite state machine for control
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Where we are headed

-+ Single Cycle Problems:
— what if we had a more complicated instruction like floating
point?
— wasteful of area
+ One Solution:
— usea‘‘smaller'* cycle time
— have different instructions take di hers of cycles
= a“multicycle” datapath:

t+ Data ‘

pe (1o pduress Lfa
Intuition p-{Register #
Mémory S dsta Registers
- Register #

i e}
Data ot Register #
register
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Multicycle Approach

- Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
- restrict each cycle to use only one major functional unit
« At the end of a cycle
— store values for use in later cycles (easiest thing to do)
— introduce additional “internal” registers

P —-




Multicycle Approach
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Instructions from ISA perspective

+ consider each instruction from perspective of ISA.
- Example: ~ ,rg
— The add instruction changes a
— Register specified by bits @5:1
— Instruction specified by the PC. e )C
— New value is the sum (“op”) ef£{wo registers. f
— Registers specified by bitanf the instruction

RegM[lS:ll]] <= Reg[Memory[PC][25:21]1] op
—_— —_— Reg[Memory [PC] [20:16]]

— In order to accomplish this we must break up the instruction.
{kind of like introducing variables when programming)

[ —-

Breaking down an instruction

ISA definition

Reg [Memory [PC]1[15:111] <= ReglMemory[PC][25:21]1]1 op
Reg[Memory [PC1[20:16]1]

- Could break down to:
- IR <= Memory [PC]
- A <= Reg[IR[25:21]1]

[
- B <= Reg[IR[20:161] 1 Levrs o zfjj

- ALUOut <= A op B Ext v 9w
- Reg[IR[15:11]] <=@O_k A
w v b

We forgot an imp: art of the definition of arithmetic!
- PC <= BC + 4

Busear
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Idea behind multicycle approach

+  We define each instruction from the ISA perspective (do this!)

+ Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

Finally try and pack as much work into each step
{avoid unnecessary cycles)

while also trying to share steps where possible
{minimizes control, helps to simplify solution)

Result: Our book’s multicycle Implementation!

30
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Five Execution Steps

Bigees \
Instruction Fetch

Instruction Decode and Register Fetch
- Execution, Memory Address Computation, or Branch Completion

+ Memory Access or R-type instruction completion

Write-back step

INSTRUCTIONS TAKE FROM'3 -5 CYCLES!

o0 Horgam Kaman Bublkien
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Step 1: Instruction Fetch

+ UsePC to get instruction and put it in the Instruction Register.
+ Increment the PC by 4 and put the result back in the PC.
« Can bhe described succinctly using RTL "Register-Transfer Language™

IR <= Memorxy[PC];
PC <= PC + 4;

Can we fignre ont the vahies of the control signals?

What is the advantage of pdating the PC now?

32
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Step 2: Instruction Decode and Register Fetch

- Read registers rs and rt in case we need them
+ Compute the branch address in case the instruction is a branch

+ RTL:
S
A <= Reg[IR[25:21]]; |q2\
B <= Reg[IR[20:16]]; 1 Lag

ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

+  We aren't setting any control lines based on the instruction type
{we are busy "decoding” it in our control logic)

pi) + 1w et
&l/?;
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Step 4 (R-type or memory-access)
- Loads and stores access memory
MDR <= Memory [ALUOut]; "J
or
Memory [ALUOut] <= B; Sl‘)
+ ‘R-typeinstructions finish
Reg[IR[15:11]] <= ALUOut;
The write actually takes place at the end of the cycle on the edge
35
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Step 3 (instruction dependent)

- ALU is performing one of three functions, based on instruction type

- yMemory Reference: I"J/‘Sh)

ALUOUE <= A+ sign=-extend (IR [15:0])F
NMW“\’I Ql,(
ALUOut <= A op B;

« Branch:

if (A==B) PC <= ALUOut; l9’]

oot mong v pueie 54
Write-back step
+ “Reg[IR[20:16]] <= MDRy;
Which instruction needs this?
36
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Summary:
1 E, Mewd Mo '?)@g g
[instsucton teen R <= Memon(Fc)
PC<aPCed

| mstucuon gecode/register fetoh A <= RegIR|25821))

B <= Rig [IR[20:16))

ALUOUL <= BE + (signextend (IR15 0 << 2)
EXCUON, aliess COMPULAION. ALUOW <= A0p B ALUOUt + signextend IT(A==8) PC <= (PC [31:28),
‘branch Jump completon (IR(15:0)) PC <= ALUOUL (IR[25:0]).2'D00)}
Memory accass of Raype Reg (IR(15:11]) <= Load: MOR <= Memony{ALUOut]
completion ALUOUt or
Store: Memary [ALUOWY) <= 8

‘Memory read compleyon

FIGURE 5.30 Summary of mo steps taken to execute any instruction class. lnstructions take from three o five cxeution steps. The
first two steps are indep ofthe After these steps, takes from one to three

the instruction class. The empty entries for the Memory acces step or the Memory read completion step indicate that lMp\mmhl instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as scon as the current instruction completes, s0 these cycles are
ot o wased. Aw aniond el thesogte Sleacuulysuds ey cc. bt s lomga he R dos nct crang, he vals sed e the v
ister file are identical. In particular, register B during the age. Retype instruction, is the same as
the vlue stored into B during the Execution stage and then used in the Memory access stage for a store
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Simple Questions

- How many cycles will it take to execute this code?

9%

Label:

S 1w $t2, 0($t3)

£ Lw §t3, 4(5t3)

3 beq $t2, $t3, Label —  #assume not
% add $t5, $t2, $t3

g $t5 8(5t3) 16

+  Whatis going on during the 8th cycle of execution?
+ In what cycle does the actual addition of $t2 and $t3 takes place?

ruuvuydonjuyrryuuyuydyuue
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Implementing the Control

« Value of control signals is dependent upon:
- what instruction is being executed
— which step is being performed

+ Use the information we've accumulated to specify afinite state machine
— specify the finite state machine graphically, or
— use microprogramming

+ Implementation can be derived from specification

Insructon decade/
register foh

Graphical Specification of FSM , ,&“ N

Uspoa 0

Horie
LSS =01
“ALLDp = 00

e/
Petumei0 /

s

+ Note:
— don't care if not mentioned
— asserted if name only
— otherwise exact value

- How many state
bits will we need?

Marmaryrest
_t completon siep

4
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PLA Implementation

+ Ifl picked a horizontal or vertical line could you explain it?
s

i >
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Finite State Machine for Control
- Implementation:
Contral logic
Qutputs
Inputs
HEEERER
opcode fisld
FT—
ROM Implementation
+ ROM ="Read Only Memory"
— values of memory locations are fixed ahead of time
- A ROM can be used to implement a truth table
— ifthe address is m-bits. we can address 2" entries in the ROM.
— our outputs are the bits of data that the address points to.
ooooo11
oo11100
m n o10/1100
L oi1j1000
1000000
1010001
1100110
111jo01 11
mis the "height”, and n is the "width"
50
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ROM Implementation

- How many inputs are there?
6 bits for opcode, 4 bits for state =10 address lines
{i.e., 21° =1024 different addresses)

+  How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

ROM is 21° x 20 = 20K bits (and a rather unusual size)

Rather wasteful, since for lots of the entries, the outputs are the
same
—i.e.. opcode is often ignored

ol Mo bt an P lers
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ROMvs PLA

Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits. 2 x 4 bits of ROM
— Total: 4.3K bits of ROM
« PLAis much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares
- Size is (#inputs x #product-terms) + (Foutputs x #product-terms)
For this example = (10x17)+{20x17) = 510 PLA cells

- PLA cells usually about the size of a ROM cell (slightly bigger)

oot morga Karm
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Another Implementation Style

- Complexinstructions: the "next state” is often current state +1

Details

DispatchROM 1 Dispatch ROM
op e o | [ vawe

000000 Rformat 0110 100011 In | on

000010 mp. 1001 s01011 | = | o

000100 Py 1000 Fiorrou

100011 ey o010

101011 = o010 |

)
\ t o J
— U

) Depats Fom 1

s

Wetchn Egber

opuck 11
dd: trol action Value of AddrCtl
0 Use incremented stats
1 Use gispalcn RO | 1
Lise gispatc ROU
Use incremented stals
i Repiace state qumber by 0 0
5 Replace state number by 0 0
Use ineremented stats
Repiace state qumber Dy 0 0
Replace state number by 0 0
g Replace state number v 0 0
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Microprogramming
ficrocade memar hitem ead tapat
o
i
[
,
5
- What are the “microinstructions™ 7
55
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Microprogramming

- A specification methodology
— appropriate if hundreds of opcodes. modes, cycles, etc.
- signals specified symbolically using microinstructions

ALy Register PCwrite
Label control | SRC1| SRC2 control Memory control
Fetch |Add PC 4 Read PC__|ALU Seq
Add PC Extshft [Read Dispatch 1
Mem 1 Add A Extend Dispatch 2
LW2 Read ALU Seq
(Wiite MDR Fetch
SW2 (Write ALU Fetch
Riomati |Func code [A B Seg
W rite ALU Fefch
BEQ1 Subt A B IALUOut-cond _|Fefch
JUMP1 Jump address |Fetch

«  Willowo implementations of the same architectsire have the same miicroc ode?
* Whatwould a microasseribler do?

o0 Horgam Kaman Bublkien
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Microinstruction format

Fisld name. Value als act Comment
laag ALU0p=00 Caize e alli oo
AL contral sutt ALUOp=01 Caise the AL tosuttiact, this implements the compare for
Funccode use functien AU conral
e Ec lice the PC o the (rst AL input

A [megisier A s the frstal Uinput
B AusB-m [Register B & the seoord Al input
src2 2 AugsE=o Use ¢ o the secons ALU input
Exiena ausE=10 lice cufput of AU
Exare alusa= 1 use Ui 25 the secom 11 pout
Resd Resd tuo regsters s ing the rs and i fiekds of e IR =s the register
e oto regisiers A i B
write ALU RegWiie, 11ite 3 regiter using therd fied of e IR as the registar number and
Registe the coments of the AL =5 the dats
cortrol
Write DR RegUirie, \Vrite 2 ragiter using hert fild of the IR s the regiter number and
Reglst=0, the coments of the MDR s the ats
MemiReg=1
Resa PO MemRead, [Resd memary using e PC = address; wiks result ita IR (and
kD=0 ire DR
emory Resd ALU emRead, [Reso memary using he ALUOut a5 sdress: wiite resultinto MOR.
D=1
Write ALU Wemrie, W rite memary wsing the ALUOu == sddress, conients of B.2s he.
kD=1 dets
[y FCSource =00 WVrite the cutput of the AL into the FC.
2
PCwil contal  |[ALUGucond  |PCScurce =01, |IFthe Zero autput o the ALL & sctive, write the PG with the contents
fthe cegetce A UOW
[lomp saess | FoSaurce = 10, Wiite the FC with the jump acdress from the instrucion
Weie
By Aderou= 11 Chonsstre
Szquencing Eatcn aderCi=00 tobagin s rew rerugion
Dispatch 1 acorou= 01 Dis patoh sing the ROM 1
Disgatch 2 Aderoi=10 i catoh 1sina the ROM 2

5
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Maximally vs. Minimally Encoded

+ No encoding:
- 1 bitfor each datapath operation
- faster, requires more memory {logic)
— used for Vax 780 — an astonishing 400K of memory!
- Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
«+ Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
- It's easy to add new instructions
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Chapter 5 Summary

+ If we understand the instructions...
We can build a simple processor!
- Ifinstructions take different amounts of time, multi-cycle is better
+ Datapath implemented using:
- Combinational logic for arithmetic
— State holdi tor bits

« Control implemented using:
— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation
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Datapath

L Ty
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pigd ||,
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- Instrucion Read L
§ ] Adarons 2se2] mater 1 gl ¢
4 Ingtruction catn 1
Memory 20918] ;_”"":_2 Zoro|
Registers. ALy
reeut]| T[T ] |EPC
Wilte ——
datn

3
8

il
b |
=1 8

o
Ol
i

]
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Microcode: Trade-offs

+  Distinction between specifi and impl ion is imes blurred

« Specification Advantages:
— Easy to design and write
- Design architecture and microcode in parallel
+ Implementation (off-chip ROM) Advantages
— Easy to change since values are in memory
- Can emulate other architectures
— Can make use of internal registers
. I ion Disadvant: SLOWER now that:
— Control is implemented on same chip as processor
— ROM is no longer faster than RAM
- No need to go back and make changes

[ ———

Exceptions (MIPS)

+ Exception: An unscheduled event that disrupts
program execution

« Interrupt: An exception that comes from outside of the
processor

+ New Registers: EPC and Cause
+ Two Methods: Simple and Vectored

et Harga b an
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Control
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