Análise de Fluxo de Dados

Sandro Rigo sandro@ic.unicamp.br

Otimização

- Transformações para ganho de eficiência
- Não podem alterar a saída do programa

Exemplos:

- Dead Code Elimination: Apaga uma computação cujo resultado nunca será usado
- Register Allocation: Reaproveitamento de registradores
- Common-subexpression Elimination: Se uma expressão é computada mais de uma vez, elimine uma das computações
- Constant Folding: Se os operandos são constantes, calcule a expressão em tempo de compilação

- Essas transformações são feitas com base em informações coletas do programa
- Esse é o trabalho da análise de fluxo de dados
- Intraprocedural global optimization
 - Interna a um procedimento ou função
 - Engloba todos os blocos básicos

Idéia básica

- Atravesse o grafo de fluxo do programa coletando informações sobre a execução
- Conservativamente!
- Modifique o programa para torná-lo mais eficiente em algum aspecto:
 - Desempenho
 - Tamanho
- Maioria das análises podem ser descrita através de equações de fluxo de dados:
 - Ex.: Análise de Longevidade (Cap 10)

- Veremos análises baseadas no CFG de quádruplas:
 - a ← b op c é representada como (a, b, c, op)
- Liveness Analysis
- Reaching Definitions
- Available Expressions

- Definição não ambígua de t:
 - d: t ← a op b
 - d: t ← M[a]
- d alcança uma sentença u:
 - Se existe um caminho no CFG de d para u
 - Esse caminho não contém outra definição não ambígua de t
- Definição ambígua
 - Uma sentença que pode ou n\u00e3o atribuir um valor a t
 - CALL
 - Não acontecem no compilador Minijava

- Pode ser expressa como equações de fluxo de dados
- Criamos IDs para as definições
 - d1: t ← x op y
 - Gera d1
 - Mata todas as outras definições de t, pois não alcançam o final dessa instrução
- defs(t): conjunto de todas as definições de t

Conjuntos Gen e Kill

Table 17.2:	Gen and	kill for	reaching	definitions.
-------------	---------	----------	----------	--------------

Statement s	gen[s]	kill[s]
d: t ← b ⊕ c	{ <i>a</i> }	$defs(t) - \{d\}$
$d: t \leftarrow M[b]$	{ <i>a</i> }	$defs(t) - \{d\}$
$M[a] \leftarrow b$	₽	{}
if a relop b goto L_1 else goto L_2	()	{}
goto L	{ }	{ }
L:	{}	{}
$f(a_1,, a_n)$	O	{ }
$d: t \leftarrow f(a_1,, a_n)$	{d}	$defs(t) - \{d\}$

- Usando gen e kill computamos:
 - In[n]: conjunto de definições que alcançam o início de n
 - Out[n]: conjunto de definições que alcançam o final de n

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$

 $out[n] = gen[n] \cup (in[n] - kill[n])$

In e Out inicializados com vazio.

1: $a \leftarrow 5$

2 : c ← 1

3:L1:ifc>a goto L2

 $4: c \leftarrow c + c$

5: goto L1

 $6: L2: a \leftarrow c - a$

7: $c \leftarrow 0$

			Iter. 1		Iter. 2		Iter. 3	
11	gen[n]	kill[n]	in[n]	out[n]	in[n]	out[n]	in[n]	out[n]
1	1	6		1		1		1
2	2	4,7	1	1,2	1	1,2	1	1,2
3	=======================================		1,2	1,2	1,2,4	1,2,4	1,2,4	1,2,4
4	4	2,7	1,2	1,4	1,2,4	1,4	1,2,4	1,4
5			1,4	1,4	1,4	1,4	1,4	1,4
6	6	1	1,2	2,6	1,2,4	2,4,6	1,2,4	2,4,6
7	7	2,4	2,6	6,7	2,4,6	6,7	2,4,6	6,7

 Você imagina alguma otimização que poderia fazer no programa usando essa informação?

Available Expressions

x op y está disponível em n no CFG se:

- Para todo caminho a partir do nó de entrada até n, x op y é computada pelo menos uma vez
- Não há definições de x ou y após a mais recente ocorrência de x op y no caminho

Gen e kill se tornam conjuntos de expressões

- Nó que calcula x op y: Gera x op y
- Qualquer definição de x ou y mata x op

Available Expressions

Table 17.4: Gen and kill for available expressions.

Statement s	gen[s]	kill[s]
$t \leftarrow b \oplus c$	$\{b\oplus c\}-kill[s]$	expressions containing t
$t \leftarrow M[b]$	$\{M[b]\} - kill[s]$	expressions containing t
$M[a] \leftarrow b$	{ }	expressions of the form M[x]
if $a > b$ goto L_1 else goto L_2	{ }	∂
goto L	0	\
L:	{}	{ }
f(a ₁ ,, a _n)	{ }	expressions of the form $M[x]$
$t \leftarrow f(a_1,, a_n)$	0	expressions containing t , and expressions of the form $M[x]$

Available Expressions

- Usando gen e kill computamos:
 - In[n]: conjunto de expressões disponíveis no início de n
 - Out[n]: conjunto de expressões disponíveis no final de n

$$in[n] = \bigcap_{p \in pred[n]} out[p]$$
 if n is not the start node $out[n] = gen[n] \cup (in[n] - kill[n])$

- In e Out inicializados com "cheio".
 - Por que?
- Exceção para in do nó de entrada

Liveness Analysis

Podemos usar gen e kill:

- Usos de variável geram liveness
- Definições de variável matam liveness

Statement s	gen[s]	kill[s]
t - b ⊕ c	{b, c}	{ <i>t</i> }
$t \leftarrow M[b]$	{b}	{ <i>t</i> }
$M[a] \leftarrow b$	{a, b}	{ }
if $a > b$ goto L_1 else goto L_2	{a, b}	{}
goto L	{}	{}
L:	{ }	{ }
$f(a_1,, a_n)$	$\{a_1,,a_n\}$	{}
$t \leftarrow f(a_1, \dots, a_n)$	{a ₁ ,, a _n }	{ <i>t</i> }

Liveness Analysis

- Podemos usar gen e kill:
 - Usos de variável geram liveness
 - Definições de variável matam liveness

$$in[n] = gen[n] \cup (out[n] - kill[n])$$
$$out[n] = \bigcup_{s \in succ[n]} in[s]$$

Liveness tem fluxo contrário ao do grafo

Reaching Expressions

- t ← x op y pertence a um nó s do CFG
- Dizemos que essa expressão alcança o nó n se, no caminho de s a n:
 - Não há definições a x ou a y
 - Não há outro cálculo de x op y
- Pode ser formulado como análise de fluxo de dados

Reaching Expressions

- Na prática:
 - É necessária para poucas expressões
 - É computada através de uma busca no grafo
- É usada em Common sub-expression elimination

Transformações

Common-subexpression Elimination

- Seja s: t ← x op y
- Se x op y está disponível em s
 - Elimine o cálculo de x op y de s
- Algoritmo
 - Usa informação das expressões disponíveis em s
 - Compute reaching expressions, encontrando expressões da forma
 n: v ← x op y que alcançam s
 - Crie um novo temporário w e reescreva n da forma
 - n: w ← x op y
 - n': v ← w
 - Modifique s para:
 - s: t ← w

Constant Propagation

- Seja d: t ← c (constante)
- Seja n: y ← t op x
- Quando t será constante em n?
 - Neste caso, podemos reescrever n da forma
 - n: y ← c op x

Copy Propagation

- Mesma idéia de Constant Propagation
 - Ao invés de uma constante temos uma variável
- Seja d: t ← z
- Seja n: y ← t op x
- Quando t será uma cópia em n?
 - Neste caso, podemos reescrever n da forma
 - n: y ← z op x

Copy Propagation

- Assim como coalescing, elimina cópias desnecessárias
- Pode gerar mais spills na alocação
 - Se realizada antes da alocação
- Pode explicitar mais alternativas para outras otimizações

$$-a \leftarrow y + z$$

$$- C \leftarrow U + Z$$

Dead Code Elimination

Se a não está viva em out[s] em:

```
- s: a \leftarrow t op x
```

- s: a
$$\leftarrow$$
 M[x]

- Podemos apagar s
- Qual análise é necessária?
- Tomar cuidado com efeitos colaterais

- Suponha dois nós no CFG n e p
 - p é o único predecessor de n
- Neste caso, podemos combinar os efeitos gen e kill de n e p
- Teremos apenas um nó no grafo
- Podemos repetir para todas as instruções de um bloco básico!

- Bloco básico: Apenas uma entrada, uma saída e nenhum desvio contido nele.
- Pense em Reaching Definitions
 - Como combinar gen e kill para um bloco básico?
- $out[n] = gen[n] \cup (in[n] kill[n]).$
- in[n] = out[p]. Por quê?

Então temos:

 $- out[n] = gen[n] \cup ((gen[p] \cup (in[p] - kill[p])) - kill[n]).$

Lembre-se que

$$- (A \cup B) - C = (A - C) \cup (B - C)$$

$$- A - (B \cup C) = (A - B) - C$$

Logo:

$$- out[n] = gen[n] \cup ((gen[p] - kill[n]) \cup (in[p] - (kill[p] \cup kill[n]))$$

- Logo:
 - $out[n] = gen[n] \cup ((gen[p] kill[n]) \cup (in[p] (kill[p] \cup kill[n]))$
- Daí tiramos que:
 - $gen[pn] = gen[n] \cup (gen[p] kill[n])$
 - $kill[pn] = kill[p] \cup kill[n]$
- Exercício: Deduza essas equações para outras análises
 - Available expressions, liveness

- Usando essa técnica podemos
 - Combinar todas as sentenças de um bloco básico
 - Criar gen e kill para o bloco todo
- O CFG de BBs é muito menor que o de sentenças individuais
- Acelera a análise

Ordenação dos Nós

Forward analysis:

- Ordenar os nós com DFS
- Topológica (sem ciclos)
- Quase-topológica (com ciclos)
- Faz com que a maioria dos predecessores seja computada antes dos sucessores

Backward analysis

Começar pelo nó saída

