

0010010110101111001111110101010101000
1010100010101110111000111010110011011

10010110101111001111110101010101000
10100010101110111000111010110011011
10010010110101111001111110101010101

010100010101110111000111010110011
110111100111111010101010100010111
10101110111000111010110011011111

1011101001010101110000101010111
0110101111001111110101010101000

010101110111000111010110011011
010110101111001111110101010101
100010101110111000111010110011

11100111111010101010100010111
10110101111001111110101010101

Distributed, Parallel,
and Alternative

Architecture Databases

Bancos de Dados

Luiz Celso Gomes-Jr
gomesjr@dainf.ct.utfpr.edu.br

Outline
● Terminology
● Parallel Databases
● Distributed Databases
● Client-server Architecture
● Alternative Architectures

Need for speed

Exercício 1
● [Preliminares] Suponha que a DIRGRAD esteja

enfrentando problemas para atender as
consultas online de CR dos alunos (o tempo de
resposta é muito longo). As tabelas do banco
são descritas abaixo. Quais técnicas (ao menos
duas) vocês poderiam aplicar para melhorar o
desempenho das consultas?

● Aluno(RA, nome, curso)
● Disciplina(codigo, nome)
● Cursa(RA, codigo, nota)

Need for speed
● Bigger computers: Faster CPUs
● Parallel: Multiple CPUs
● Distributed: Multiple Servers
● Alternative Architectures: Specialized CPUs
● Alternative Frameworks: adapt DBMS to the

task (NoSQL, next class)
● Alternative Data Structures: adapt DBMS to

the type of data (Spatial, Multimedia,
Temporal, Active, Documents, Graphs... soon)

more
complexity

Terminology - Speed-Up

More resources means proportionally less time for given
amount of data.

Terminology - Scale-Up

If resources increased in proportion to increase in data
size, time is constant.

Also: proportional cost

Infrastructures cost should remain proportional as
number of CPUs grow.

Parallel Databases

Parallelism
● More processors -> Better Throughput
● Divide big problems into smaller ones

DBMS are suited for
parallelism

● Bulk processing of data partitions
● Natural pipelining (execution plan)
● Users don’t need to write parallel queries

Parallelism over time
● Before: big parallel computers
● Now: small multicore servers organized in

clusters

Levels of sharing
● Shared memory
● Shared disk
● Shared nothing (network)

Architecture Issue: Shared What?

Shared
Memory

Shared
Disk

Shared Nothing
(network)

• Easy to program
• Expensive to build
• Difficult to scale up

• Hard to program
• Cheap to build
• Easy to scale up

Types of DBMS
parallelism

● Intra-operator parallelism
– get all machines working to compute a given

operation (scan, sort, join)
● Inter-operator parallelism

– each operator may run concurrently on a
different site (exploits pipelining)

● Inter-query parallelism
– different queries run on different sites

Automatic Data Partitioning
Partitioning a table:

Good for equijoins,
range queries,

group-by

Good to spread
load

Good for equijoins

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

Exercício 2

Ordene os tipos de técnica de particionamento de dados
(Range, Hash, Round Robin) de acordo com o tamanho
físico dos índices que precisam ser mantidos para localizar
o disco ou CPU que contém cada tupla. Justifique sua
resposta.

Distributed Databases

Definition
● A transaction can be executed by multiple

networked computers in a unified manner.
● A distributed database (DDB) is a

collection of multiple logically related
database distributed over a computer
network

● A distributed database management
system (DDBMS) is a software system
that manages a distributed database while
making the distribution transparent to
the user.

Distributed Database
System

● Management of distributed data with
different levels of transparency:
– This refers to the physical placement of data

(files, relations, etc.) which is not known to
the user (distribution transparency).

Transparency
The EMPLOYEE, PROJECT, and WORKS_ON tables
may be fragmented horizontally and stored with
possible replication as shown below.

Advantages (transparency, contd.)

● Distribution and Network transparency:
– Users do not have to worry about operational

details of the network.
– There is Location transparency, which

refers to freedom of issuing command from
any location without affecting its working.

– Then there is Naming transparency, which
allows access to any names object (files,
relations, etc.) from any location.

Advantages (transparency, contd.)

● Replication transparency:
– It allows to store copies of a data at multiple

sites.
– This is done to minimize access time to the

required data.
● Fragmentation transparency:

– Allows to fragment a relation horizontally
(create a subset of tuples of a relation) or
vertically (create a subset of columns of a
relation).

Advantages (transparency, contd.)
● Increased reliability and availability:

– Reliability refers to system live time, that is,
system is running efficiently most of the time.
Reliability is often characterized in terms of
mean time between failures (MTBF).

– Availability is the probability that the
system is continuously available during a
time interval. Availability is given as a
percentage of the time a system is expected to
be available, e.g., 99.999 percent ("five nines").

● A distributed database system has multiple
nodes (computers) and if one fails then
others are available to do the job.

Advantages (transparency, contd.)

● Improved performance:
– A distributed DBMS fragments the database to

keep data closer to where it is needed
most.

– This reduces data management (access and
modification) time significantly.

● Easier expansion (scalability):
– Allows new nodes (computers) to be added

anytime without changing the entire
configuration.

Data Fragmentation,
Replication and Allocation
● Data Fragmentation

– Split a relation into logically related and
correct parts. A relation can be fragmented in
two ways:

● Horizontal Fragmentation
● Vertical Fragmentation

Horizontal fragmentation
● It is a horizontal subset of a relation which

contain those of tuples which satisfy
selection conditions.

● Consider the Employee relation with
selection condition (DNO = 5). All tuples
satisfy this condition will create a subset
which will be a horizontal fragment of
Employee relation.

● A selection condition may be composed of
several conditions connected by AND or OR.

Horizontal fragmentation

Vertical fragmentation
● It is a subset of a relation which is created

by a subset of columns. Thus a vertical
fragment of a relation will contain values of
selected columns.

● Consider the Employee relation. A vertical
fragment of can be created by keeping the
values of Name, Bdate, Sex, and Address.

● Because there is no condition for creating a
vertical fragment, each fragment must
include the primary key attribute of the
parent relation Employee.

Vertical fragmentation

Representation - Horizontal
fragmentation

● Each horizontal fragment on a relation can be
specified by a σCi (R) operation in the
relational algebra.

● Complete horizontal fragmentation: A set of
horizontal fragments whose conditions C1,
C2, …, Cn include all the tuples in R- that is,
every tuple in R satisfies (C1 OR C2 OR … OR
Cn).

● Disjoint complete horizontal fragmentation:
No tuple in R satisfies (Ci AND Cj) where i ≠ j.

Representation - Vertical
fragmentation

● A vertical fragment on a relation can be specified
by a ΠLi(R) operation in the relational algebra.

● Complete vertical fragmentation: A set of vertical
fragments whose projection lists L1, L2, …, Ln
include all the attributes in R but share only the
primary key of R. In this case the projection lists
satisfy the following two conditions:

● L1 U L2 U ... U Ln = ATTRS (R)
● Li Lj = PK(R) for any i j, where ATTRS (R) is the set of ∩

attributes of R and PK(R) is the primary key of R.

Data Fragmentation, Replication and
Allocation

● Fragmentation schema
– A definition of a set of fragments (horizontal

or vertical or horizontal and vertical) that
includes all attributes and tuples in the
database that satisfies the condition that the
whole database can be reconstructed from
the fragments.

● Allocation schema
– It describes the distribution of fragments to

sites of distributed databases. It can be fully
or partially replicated or can be partitioned.

Replication and Allocation
● Data Replication

– In full replication the entire database is replicated
and in partial replication some selected part is
replicated to some of the sites.

– Data replication is achieved through a replication
schema.

● Data Distribution (Data Allocation)
– This is relevant only in the case of partial replication

or partition.
– The selected portion of the database is distributed to

the database sites.

Exercício 3
● Considere a relação R(a,b,c). Quais operações da

álgebra relacional são necessárias para recompor a
tabela em caso de fragmentação horizontal? E para
fragmentação vertical?

Vertical

Horizontal

Concurrency Control
and Recovery

● Dealing with multiple copies of data
items

● Failure of individual sites
● Communication link failure
● Distributed commit
● Distributed deadlock

Parallel vs distributed servers
● parallel database server:

– servers in physical proximity to each other
– fast, high-bandwidth communication between

servers, usually via a LAN
– most queries processed cooperatively by all

servers
● distributed database server:

– servers may be widely separated
– server-to-server communication may be slower,

possibly via a WAN
– queries often processed by a single server

Client-Server Database
Architecture

Client-Server DB Architecture
● It consists of clients running client software, a set

of servers which provide all database functionalities
and a reliable communication infrastructure.

● 3-Tier Architecture

Client-Server DB Architecture

● Clients reach server for desired service,
but server does reach clients.

● The server software is responsible for local
data management at a site, much like
centralized DBMS software.

● The client software is responsible for most
of the distribution function.

Processing of SQL queries

● Client parses a user query and
decomposes it into a number of
independent sub-queries. Each subquery
is sent to appropriate site for execution.

● Each server processes its query and sends
the result to the client.

● The client combines the results of
subqueries and produces the final result.

Arquitetura Cliente-
Servidor

● Usada na maioria das instituições
● Usuário acessa a aplicação por um

dispositivo Cliente (desktop, laptop,
celular…)

● Aplicação envia consultas para obter dados
do SGBD (Servidor)

● SGBD processa consulta e retorna dados
para serem exibidos no Cliente

● Exemplos: Folha de pagamentos, iTunes

Arquitetura Cliente-
Servidor

App

Cliente 1

Servidor

SGBD

App

Cliente n

. . . Rede

Arquitetura Web 1.0
● Usada na maioria dos sites “normais”
● Usuário usa o navegador para requisitar

páginas para um Servidor Web
● Servidor Web envia consultas a um ou mais

SGBDs para obter dados e montar a página
● Exemplos: bancos online, sites de empresas
● Muitas apps e sites como Facebook, Google

precisam de arquiteturas mais complexas.
Veremos estes casos no fim do curso.

Arquitetura Web 1.0
Servidor 1

SGBD

. . . Internet

Navegador 1

Servidor
Web

Navegador n Servidor n

SGBD

Rede
Interna

. . .

Exemplo: Facebook
1.Usuário abre o navegador e entra em

facebook.com

2.Servidor Web do facebook recebe a
requisição do usuário

3.Servidor Web do facebook obtém dados do
mural de um SGBD interno

4.Servidor Web do facebook obtém dados de
propaganda de um outro SGBD interno

5.Servidor Web do facebook monta a página
e envia para o navegador exibir

Alternative Database
Architectures

● In-Memory Databases
● SSD Databases
● GPU Databases
● Crowdsourced Databases

In-Memory Databases
● Becoming popular as RAM prices drop
● Offered by main vendors (MySQL offers

in-memory storage engine)
● Durability (ACID) support?

In-Memory Databases -
Durability

● Snapshot files: generated periodically -
may lose recent information

● Transaction logging: as in RDBMS - disk
may be bottleneck

● Non-Volatile DIMM: more expensive
● Non-volatile random access memory:

usually RAM backed up with battery power
● Database replication

Crowdsourced
Databases

● Ongoing research
● For task that are hard for computers to

process
● e.g. interpreting images
● Uses crowdsourcing infrastructures such

as Amazon Mechanical Turk

Crowdsourced
Databases

SELECT * FROM images
WHERE isFlower(img)

TASK isFlower(Image img) RETURN BOOL:
TaskType: Question
Text: ``Does this image:
contain a flower?'',URLify(img)
Response: Choice(``YES'',``NO'')

Referências

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

