Grafos bipartidos, direcionados e ponderados

MC558 - Projeto e Análise de Algoritmos II

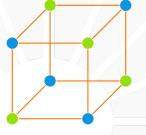
Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"A Teoria dos Grafos é, em última instância, o estudo das relações."

Vegard Flovik

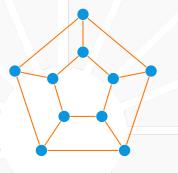
Definição

Um grafo G = (V, E) é **BIPARTIDO** se existe uma partição (A, B) de V tal que toda aresta de G tem um extremo em A e outro em B.



Um grafo G = (V, E) é bipartido se for possível colorir os vértices de G com **DUAS CORES** de modo que vértices adjacentes tenham cores distintas.

Exemplo



Este grafo NÃO é bipartido.

Pois possui ciclos de comprimento ímpar!

Condição necessária e suficiente

Teorema

Seja G um grafo. Então G é bipartido se e somente se G não possuir um ciclo ímpar.

Demonstração:

- ▶ Já vimos que se G tem um ciclo ímpar, ele não é bipartido.
- Assim, resta demonstrar a recíproca.
- Podemos supor que G é conexo. Por quê?
- Antes de continuar a prova, vejamos outros resultados...

ÁRVORE GERADORA

Propriedade

Fato (1)

Todo grafo conexo contém uma árvore geradora.

Provar o fato a partir do seguinte resultado (exercício):

Lema

Seja G um grafo conexo e seja C um ciclo de G. Se e é uma aresta de C então G - e é conexo.

A recíproca também vale:

Lema

Seja G um grafo conexo e seja e uma aresta de G. Se G - e \acute{e} conexo então \acute{e} pertence a algum ciclo de G.

Árvores e grafos bipartidos

Fato (2)

Toda árvore T = (V, E) é um grafo bipartido.

É possível provar por indução em V. Demonstre como exercício.

Árvore geradora

Fato (3)

Seja T = (V, E') uma árvore geradora de um grafo G = (V, E). Então para toda aresta $e \in E \setminus E'$ existe um único ciclo em $T + e = (V, E' \cup \{e\})$.

Demonstração:

- Sejam u,v os extremos de e.
- ▶ Como T é árvore, existe um único caminho P de u a v em T.
- Portanto, $P + \mathbf{e}$ é o único ciclo em $T + \mathbf{e}$.

O único ciclo de T + e é chamado de CICLO FUNDAMENTAL.

Demonstração do teorema

Agora estamos prontos para demonstrar a segunda parte do teorema:

Teorema

Seja G um grafo. Então G é bipartido se e somente se G não possuir um ciclo ímpar.

Demonstração:

- Resta mostrar que se G não tem ciclo ímpar, ele é bipartido.
- Lembre, podemos supor que *G* seja conexo.
- ▶ Suponha que *G* não contenha um ciclo ímpar.
- Construiremos uma bipartição (A, B) de V tal que toda aresta de G tem um extremo em A e outro em B.

Demonstração do teorema

- Pelo Fato 1, G contém uma árvore geradora T = (V, E').
- Pelo Fato 2, T possui uma uma bipartição (A, B) de V tal que toda aresta de T tem um extremo em A e outro em B.
- Mostraremos que toda aresta de E \ E' tem um extremo em A e outro em B.

Demonstração do teorema

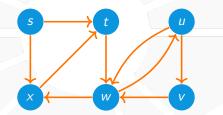
Seja e uma aresta de $E \setminus E'$:

- Pelo Fato 3, existe um único ciclo C em $T + \mathbf{e}$ que contém \mathbf{e} .
- ► Se os extremos de e são da mesma parte (A ou B),
- ▶ então *C* é um ciclo ímpar, o que é uma **CONTRADIÇÃO**!
- Portanto, os extremos de e estão em partes distintas.

GRAFOS DIRECIONADOS

Definição

Um GRAFO DIRECIONADO ou DIGRAFO é definido de forma semelhante, com a diferença que as arestas (chamadas também de ARCOS) consistem de PARES ORDENADOS de vértices.



Adjacência de grafos direcionados

Considere uma aresta e = (u, v) de um grafo direcionado G:

- Dizemos que e sai de u e entra em v.
- O vértice u é a CAUDA de e.
- O vértice v é CABEÇA de e.

Temos dois tipos de grau para grafos direcionados:

- **GRAU DE SAÍDA:** $d^+(v)$ é o número de arestas que saem de v.
- ▶ GRAU DE ENTRADA: $d^-(v)$ é o número de arestas que entram em v.

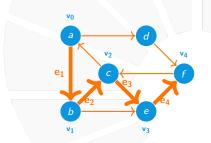
Teorema

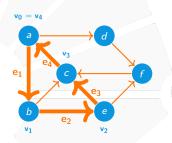
Para todo grafo direcionado G = (V, E) temos:

$$\sum_{\mathbf{v}\in\mathbf{V}}d^+(\mathbf{v})=\sum_{\mathbf{v}\in\mathbf{V}}d^-(\mathbf{v})=|\mathbf{E}|.$$

Passeios em grafos direcionados

Em um **PASSEIO DIRECIONADO** de um grafo direcionado todas as arestas seguem o mesmo sentido.





- Definimos CAMINHOS E CICLOS DIRECIONADOS analogamente, assim como subgrafos de um grafo direcionado.
- Noções de conexidade serão vistas depois.

Refletindo sobre as definições

Vamos fazer alguns exercícios?

Exercício 1

Seja G um grafo direcionado e \mathbf{u} , \mathbf{v} vértices de G. Mostre que se existe um passeio de \mathbf{u} a \mathbf{v} em G, então existe um caminho de \mathbf{u} a \mathbf{v} em G.

Exercício 2

Seja G um grafo direcionado e $\mathbf{u}, \mathbf{v}, \mathbf{w}$ vértices de G. Mostre que se em G existem um caminho de \mathbf{u} a \mathbf{v} e um caminho de \mathbf{v} a \mathbf{w} então existe um caminho de u a w em G.

Exercício 3

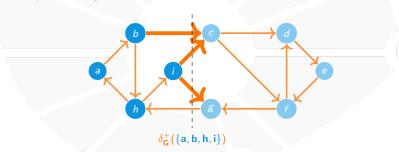
É verdade que todo passeio fechado em um grafo direcionado contém um ciclo direcionado?

CORTES EM DIGRAFOS

Cortes em grafos direcionados

Seja G = (V, E) um grafo direcionado e seja $S \subset V$.

Denote por $\delta_G^+(S)$ o **CORTE DIRECIONADO** de *G* induzido por **S**, que contém o conjunto de arestas de *G* com cauda em **S** e cabeça em $V \setminus S$.



Se $s \in S$ e $t \in V \setminus S$ dizemos que $\delta_G^+(S)$ SEPARA s de t.

Caminhos versus cortes direcionados

Lema

Seja G um grafo direcionado e sejam **s,t** vértices distintos de G. Então, exatamente uma das afirmações é verdadeira:

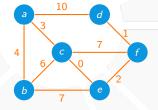
- (a) Existe um caminho de s a t em G, ou
- (b) existe um corte direcionado $\delta_{\mathbf{G}}^{+}(\mathbf{S})$ que separa \mathbf{s} de \mathbf{t} tal que $\delta_{\mathbf{G}}^{+}(\mathbf{S}) = \emptyset$.

A demonstração é análoga à do lema para grafos não direcionados. Faça como exercício.

Grafos ponderados

Definição

Um grafo (direcionado ou não) é **PONDERADO** se a cada aresta e do grafo está associado um valor real w(e), denominado **PESO** ou **CUSTO** da aresta.



Representação de grafos

Representação interna de grafos

Representamos grafos de duas maneiras principais:

- 1. MATRIZ DE ADJACÊNCIA.
- 2. LISTAS DE ADJACÊNCIA.

Qual estrutura de dados escolher?

- Depende do problema sendo tratado e das operações realizadas pelo algoritmo.
- A estrutura escolhida afeta a COMPLEXIDADE DO ALGORITMO.

Matriz de adjacência

A MATRIZ DE ADJACÊNCIA de um grafo simples G é uma matriz quadrada A de ordem |V| tal que:

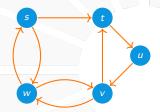
$$A[i,j] = \begin{cases} 1 & \text{se } (i,j) \in E, \\ 0 & \text{caso contrário.} \end{cases}$$

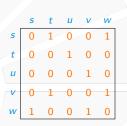
- O grafo pode ser direcionado ou não.
- ▶ Se G for não direcionado, então a matriz A é simétrica.

Matriz de adjacência

	5	t	и	V	W	
S	0	1	0	0	1	
t	1	0	1	1	0	
и	0	1	0	1	0	
V	0	1	1	0	1	
w	1	0	0	1	0	

Matriz de adjacência





Listas de adjacência

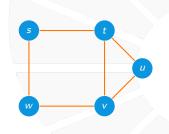
Para representar um grafo G = (V, E) por LISTAS DE ADJACÊNCIAS:

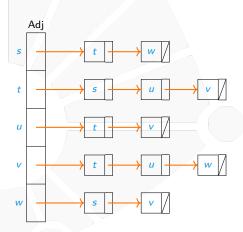
- Criamos uma lista ligada Adj[v] para cada vértice v.
- ► Adicionamos a Adj[v] todos os vértices adjacentes a v.

Como representamos uma aresta (u,v)?

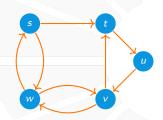
- Se a aresta for direcionada, então v está em Adj[u].
- Se a aresta for não direcionada, então v está em Adj[u] e u está em Adj[v].

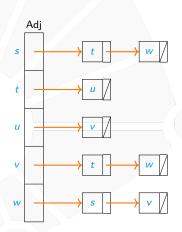
Listas de adjacência





Listas de adjacências





Notação para complexidade

Considere um grafo G = (V, E):

- Vamos simplificar a NOTAÇÃO ASSINTÓTICA.
- ► Escrevemos V e E ao invés de |V| e |E|.
- ▶ Por exemplo, $O(\mathbf{E}^2 \log \mathbf{V})$ ao invés de $O(|\mathbf{E}|^2 \log |\mathbf{V}|)$.

Matriz versus listas

A melhor representação depende do algoritmo.

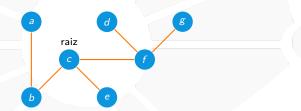
- 1. Matriz de adjacência:
 - É fácil verificar se (u, v) é uma aresta de G.
 - ▶ O espaço utilizado é $\Theta(V^2)$.
 - Adequada para grafos densos (com $|E| = \Theta(V^2)$).
- 2. Listas de adjacência:
 - ▶ É fácil listar os vértices adjacentes de um dado vértice v.
 - ▶ O espaço utilizado é $\Theta(V + E)$.
 - Adequada a grafos esparsos (com $|\mathbf{E}| = \Theta(\mathbf{V})$).

Extensões

- ► Há alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Essas representações podem ser usadas para grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.
- Para determinados algoritmos é importante manter ESTRUTURAS DE DADOS ADICIONAIS.

Representação de árvores

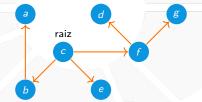
Uma ÁRVORE ENRAIZADA é uma árvore com um vértice especial chamado RAIZ.



Representação de árvores

Uma **ÁRVORE DIRECIONADA** com raiz \mathbf{r} é um grafo direcionado acíclico $T = (\mathbf{V}, \mathbf{E})$ tal que:

- 1. $d^{-}(\mathbf{r}) = 0$,
- 2. $d^-(\mathbf{v}) = 1$ para $\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{r}\}$.

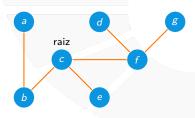


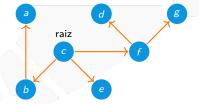
Representação de árvores

Representar uma árvore enraizada com um vetor π de **PREDECESSORES**.

vértice	a	b	C	d	е	f	g
π	b	С	Ν	f	С	С	f

O símbolo N indica a ausência de predecessor.





Alguns detalhes de implementação

- Nos algoritmos que veremos, usamos a representação de um grafo (direcionado ou não) por listas de adjacências.
- Em uma implementação real de um algoritmo, provavelmente a representação NÃO é dada a priori.
- Assim, é necessário construir tal representação a partir da dos dados de entrada.
- Como construir a representação de um grafo depende do formato da entrada.

3 4

Exemplo de entrada

Suponha que a entrada é um arquivo texto:

arestas.

5 7	O arquivo representa um grafo não direcionado.
0 1	o al-quito roprosonsa alla giaro nas all'estendas
0 2	► A primeira linha contém V e E .
1 2	
1 3	ightharpoonup Os vértices são numerados de 0 a $ V -1$.
2 3	
2.4	As próximas E linhas representam os extremos d

Exemplo de construção

Algoritmo: Construir-Adj()

```
1 leia n e m
```

2 repita m vezes

3 leia a próxima aresta (u, v)

4 insira v na lista Adj[u]

insira u na lista Adj[v]

6 devolva Adj

Grafos bipartidos, direcionados e ponderados

MC558 - Projeto e Análise de Algoritmos II

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

