# Programação Linear

MC558 - Projeto e Análise de Algoritmos II

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br





"Se o sistema apresentar uma estrutura que possa ser representada por um equivalente matemático, chamado de modelo matemático, e se o objetivo também puder ser quantificado dessa forma, então algum método computacional pode ser desenvolvido para escolher a melhor sequência de ações entre as alternativas."

George B. Dantzig.

# OTIMIZANDO UM PORTFÓLIO DE INVESTIMENTOS



Suponha que:



#### Suponha que:

► Temos 100.000 reais para investir em ações.



#### Suponha que:

- ► Temos 100.000 reais para investir em ações.
- As ações selecionadas e a porcentagem de retorno esperado em um ano são:



#### Suponha que:

- ► Temos 100.000 reais para investir em ações.
- As ações selecionadas e a porcentagem de retorno esperado em um ano são:

| Empresa                                 | Retorno (em %) |
|-----------------------------------------|----------------|
| $emp_1 = Petrobrás (petróleo/estatal)$  | 9,0%           |
| $emp_2 = Vale do Rio Doce (siderurgia)$ | 10,2%          |
| $emp_3 = Votorantim (siderurgia)$       | 6,5%           |
| $emp_4 = Texaco (petróleo)$             | 9,5%           |
| $emp_5 = Sanasa \ (água/estatal)$       | 8,5%           |



#### Otimizando um portfólio de investimentos



# Algumas restrições

A recomendação dos especialistas é a seguinte:

▶ Invista pelo menos 25% e no máximo 55% em estatais.



- ▶ Invista pelo menos 25% e no máximo 55% em estatais.
- Petrobrás e Texaco são empresas do mesmo setor (petróleo); o investimento nas duas não deve passar de 55%.



- ▶ Invista pelo menos 25% e no máximo 55% em estatais.
- Petrobrás e Texaco são empresas do mesmo setor (petróleo); o investimento nas duas não deve passar de 55%.
- Vale do Rio Doce e Votorantim são do mesmo setor (siderurgia); o investimento nas duas não deve passar de 45%.



- ▶ Invista pelo menos 25% e no máximo 55% em estatais.
- Petrobrás e Texaco são empresas do mesmo setor (petróleo); o investimento nas duas não deve passar de 55%.
- ► Vale do Rio Doce e Votorantim são do mesmo setor (siderurgia); o investimento nas duas não deve passar de 45%.
- ➤ Apesar da Vale do Rio Doce ter a maior taxa de retorno, há boatos que ela pode estar maquiando faturamento. Recomenda-se que a quantidade de investimento nela não passe de 60% do total de investimento feito em empresas de siderurgia.



#### Otimizando um portfólio de investimentos



# Escrevendo formalmente

#### VARIÁVEIS:

x<sub>1</sub> quantidade de investimento na *Petrobrás*.



- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.



- x<sub>1</sub> quantidade de investimento na *Petrobrás*.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.



- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.



- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.
- x<sub>5</sub> quantidade de investimento na Sanasa.



#### VARIÁVEIS:

- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.
- x<sub>5</sub> quantidade de investimento na Sanasa.

#### FUNÇÃO OBJETIVO:



#### VARIÁVEIS:

- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.
- x<sub>5</sub> quantidade de investimento na Sanasa.

#### **FUNÇÃO OBJETIVO:**

Maximizar o lucro esperado: maximize  $0.090x_1 + 0.102x_2 + 0.065x_3 + 0.095x_4 + 0.085x_5$ .



#### VARIÁVEIS:

- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.
- x<sub>5</sub> quantidade de investimento na Sanasa.

#### **FUNÇÃO OBJETIVO:**

Maximizar o lucro esperado: maximize  $0.090x_1 + 0.102x_2 + 0.065x_3 + 0.095x_4 + 0.085x_5$ .

#### **RESTRIÇÕES**:



#### VARIÁVEIS:

- x<sub>1</sub> quantidade de investimento na Petrobrás.
- x<sub>2</sub> quantidade de investimento na Vale do Rio Doce.
- x<sub>3</sub> quantidade de investimento na Votorantim.
- x4 quantidade de investimento na Texaco.
- x<sub>5</sub> quantidade de investimento na Sanasa.

#### **FUNÇÃO OBJETIVO:**

Maximizar o lucro esperado: maximize  $0.090x_1 + 0.102x_2 + 0.065x_3 + 0.095x_4 + 0.085x_5$ .

#### RESTRIÇÕES:

 As quantidades x<sub>1</sub>,...,x<sub>5</sub> devem ser valores válidos e devem satisfazer recomendações dos especialistas.



▶ Invista pelo menos 25% e no máximo 55% em estatais:

$$x_1 + x_5 \ge 25000$$
  
 $x_1 + x_5 \le 55000$ 



▶ Invista pelo menos 25% e no máximo 55% em estatais:

$$x_1 + x_5 \ge 25000$$
  
 $x_1 + x_5 \le 55000$ 

Petrobrás e Texaco são empresas do mesmo setor (petróleo); o investimento nas duas não deve passar de 55%:

$$x_1 + x_4 \le 55000$$



▶ Invista pelo menos 25% e no máximo 55% em estatais:

$$x_1 + x_5 \ge 25000$$
  
 $x_1 + x_5 \le 55000$ 

Petrobrás e Texaco são empresas do mesmo setor (petróleo); o investimento nas duas não deve passar de 55%:

$$x_1 + x_4 \le 55000$$

Vale do Rio Doce e Votorantim são do mesmo setor (siderurgia); o investimento nas duas não deve passar de 45%:

$$x_2 + x_3 \le 45000$$



Apesar da Vale do Rio Doce ter a maior taxa de retorno, há boatos que ela pode estar maquiando faturamento. Recomenda-se que a quantidade de investimento nela não passe de 60% do total de investimento feito em empresas de siderurgia:

$$\mathbf{x_2} \leq 0.6(\mathbf{x_2} + \mathbf{x_3})$$

que o mesmo que

$$-0.4x_2 + 0.6x_3 \ge 0$$



Apesar da Vale do Rio Doce ter a maior taxa de retorno, há boatos que ela pode estar maquiando faturamento. Recomenda-se que a quantidade de investimento nela não passe de 60% do total de investimento feito em empresas de siderurgia:

$$x_2 \le 0.6(x_2 + x_3)$$

que o mesmo que

$$-0.4x_2 + 0.6x_3 \ge 0$$

# **DEMAIS RESTRIÇÕES:**



Apesar da Vale do Rio Doce ter a maior taxa de retorno, há boatos que ela pode estar maquiando faturamento. Recomenda-se que a quantidade de investimento nela não passe de 60% do total de investimento feito em empresas de siderurgia:

$$x_2 \le 0.6(x_2 + x_3)$$

que o mesmo que

$$-0.4x_2 + 0.6x_3 \ge 0$$

# **DEMAIS RESTRIÇÕES:**

► Total investido é 100.000:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 100000$$



Apesar da Vale do Rio Doce ter a maior taxa de retorno, há boatos que ela pode estar maquiando faturamento. Recomenda-se que a quantidade de investimento nela não passe de 60% do total de investimento feito em empresas de siderurgia:

$$\mathbf{x_2} \leq 0.6(\mathbf{x_2} + \mathbf{x_3})$$

que o mesmo que

$$-0.4x_2 + 0.6x_3 \ge 0$$

# **DEMAIS RESTRIÇÕES:**

► Total investido é 100.000:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 100000$$

Nenhuma quantidade pode ser negativa:

$$x_1 \ge 0$$
,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ 



# Formulação Linear

Resolvendo-se obtemos uma lucro estimado de 9094 reais investindo:

```
\mathbf{x_1} = 0 na Petrobrás, \mathbf{x_2} = 12000 na Vale do Rio Doce, \mathbf{x_3} = 8000 na Votorantim, \mathbf{x_4} = 55000 na Texaco e \mathbf{x_5} = 25000 na Sanasa.
```

# Programação linear





## A programação linear:

Resolve de forma exata muitos problemas.



- Resolve de forma exata muitos problemas.
- Faz parte dos principais métodos para obter soluções ótimas.



- Resolve de forma exata muitos problemas.
- Faz parte dos principais métodos para obter soluções ótimas.
- Faz parte dos principais métodos para obter soluções aproximadas.



- Resolve de forma exata muitos problemas.
- Faz parte dos principais métodos para obter soluções ótimas.
- Faz parte dos principais métodos para obter soluções aproximadas.
- Obtém excelentes delimitantes para soluções ótimas.



#### Motivação

#### A programação linear:

- Resolve de forma exata muitos problemas.
- Faz parte dos principais métodos para obter soluções ótimas.
- Faz parte dos principais métodos para obter soluções aproximadas.
- Obtém excelentes delimitantes para soluções ótimas.
- Pode ser resolvida muito rapidamente.



#### Motivação

#### A programação linear:

- Resolve de forma exata muitos problemas.
- Faz parte dos principais métodos para obter soluções ótimas.
- Faz parte dos principais métodos para obter soluções aproximadas.
- Obtém excelentes delimitantes para soluções ótimas.
- Pode ser resolvida muito rapidamente.
- Há diversos programas livres e comerciais.



#### Definição

#### PΙ

No **PROBLEMA DE PROGRAMAÇÃO LINEAR** (PL) de minimização (maximização), é dada uma matriz  $A=(a_{ij})\in\mathbb{Q}^{m\times n}$ , vetores  $c=(c_i)\in\mathbb{Q}^n$  e  $b=(b_i)\in\mathbb{Q}^m$ , e queremos encontrar um vetor  $\mathbf{x}=(\mathbf{x}_i)\in\mathbb{Q}^n$  tal que:

min(max) 
$$c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n$$

$$\begin{cases}
a_{11} \mathbf{x}_1 + a_{12} \mathbf{x}_2 + \dots + a_{1n} \mathbf{x}_n & \leq b_1 \\
a_{21} \mathbf{x}_1 + a_{22} \mathbf{x}_2 + \dots + a_{2n} \mathbf{x}_n & \geq b_2
\end{cases}$$
s.a:
$$\begin{cases}
a_{m1} \mathbf{x}_1 + a_{m2} \mathbf{x}_2 + \dots + a_{mn} \mathbf{x}_n & = b_m \\
\mathbf{x}_i \in \mathbb{Q}
\end{cases}$$

ou decidir que não existe um tal vetor.



Considere um almoço que consiste em salada e sopa, com as seguintes informações nutricionais:



Considere um almoço que consiste em salada e sopa, com as seguintes informações nutricionais:

Cada 100g de salada, há 80mcg de vitamina **A**, 0.4mcg de vitamina **B** e 4mg de gorduras.



Considere um almoço que consiste em salada e sopa, com as seguintes informações nutricionais:

- Cada 100g de salada, há 80mcg de vitamina **A**, 0.4mcg de vitamina **B** e 4mg de gorduras.
- Cada 100g de sopa, há 60mcg de vitamina A, 0.2mcg de vitamina B e 6mg de gorduras.



Considere um almoço que consiste em salada e sopa, com as seguintes informações nutricionais:

- Cada 100g de salada, há 80mcg de vitamina **A**, 0.4mcg de vitamina **B** e 4mg de gorduras.
- Cada 100g de sopa, há 60mcg de vitamina A, 0.2mcg de vitamina B e 6mg de gorduras.

Os requerimentos nutricionais são de pelo menos 450mcg de vitamina  $\bf A$  e 2mcg de vitamina  $\bf B$ , enquanto se deve evitar o consumo de mais de 700g de comida.



Considere um almoço que consiste em salada e sopa, com as seguintes informações nutricionais:

- Cada 100g de salada, há 80mcg de vitamina **A**, 0.4mcg de vitamina **B** e 4mg de gorduras.
- Cada 100g de sopa, há 60mcg de vitamina A, 0.2mcg de vitamina B e 6mg de gorduras.

Os requerimentos nutricionais são de pelo menos 450mcg de vitamina  $\bf A$  e 2mcg de vitamina  $\bf B$ , enquanto se deve evitar o consumo de mais de 700g de comida.

Quantas gramas de salada e quantas de sopa devem ser consumidas, visando satisfazer os requerimentos nutricionais e minimizar o total de gorduras consumidas?



#### Tabela de informação nutricional:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vitamina A | Vitamina B | Gorduras |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------|
| NAME OF THE PARTY |            |            |          |
| <b>₩</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |          |

Os requerimentos nutricionais são: pelo menos 450mcg de vitamina  $\bf A$  e 2mcg de vitamina  $\bf B$ , além de evitar consumir mais de 700g de comida.



# Exemplo. Almoço Formulação. Variáveis

 $x_{salada}$ , quantidade (em 100g) de salada para o almoço.

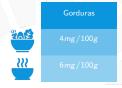


# Exemplo. Almoço Formulação. Variáveis

 $x_{salada}$ , quantidade (em 100g) de salada para o almoço.

 $x_{sopa}$ , quantidade (em 100g) de sopa para o almoço.






# Exemplo. Almoço Formulação. Função objetivo





# Exemplo. Almoço Formulação. Função objetivo



min  $4x_{salada} + 6x_{sopa}$ 



# Exemplo. Almoço Formulação. Restrições de requerimentos vitamínicos



| Vitamina A                   | Vitamina B |
|------------------------------|------------|
| 80 <i>mcg</i> / 100 <i>g</i> |            |
| 60 <i>mcg</i> /100 <i>g</i>  |            |
| 450 <i>mcg</i>               | 2mcg       |



# Exemplo. Almoço Formulação. Restrições de requerimentos vitamínicos



| Vitamina A                  | Vitamina B                   |
|-----------------------------|------------------------------|
| 80 <i>mcg</i> /100 <i>g</i> | 0.4 <i>mcg</i> /100 <i>g</i> |
| 60 <i>mcg</i> /100 <i>g</i> | 0.2mcg/100g                  |
| 450 <i>mcg</i>              | 2mcg                         |

$$80x_{salada} + 60x_{sopa} \ge 450$$
  
 $0.4x_{salada} + 0.2x_{sopa} \ge 2$ 



#### Exemplo. Almoço Formulação. Restrições de peso máximo

O almoço não deve pesar mais que 700g:



#### Exemplo. Almoço Formulação. Restrições de peso máximo

O almoço não deve pesar mais que 700g:

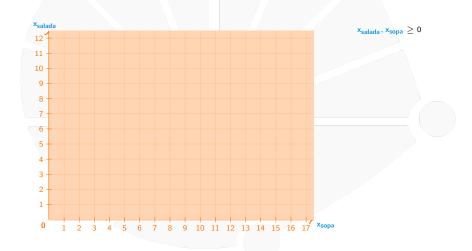
$$x_{salada} + x_{sopa} \le 7$$



# Exemplo. Almoço Formulação

min s.a :

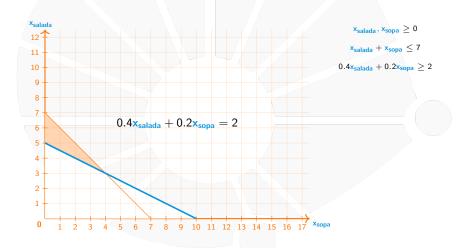
$$4x_{salada} + 6x_{sopa}$$


$$80x_{salada} + 60x_{sopa} \ge 450$$

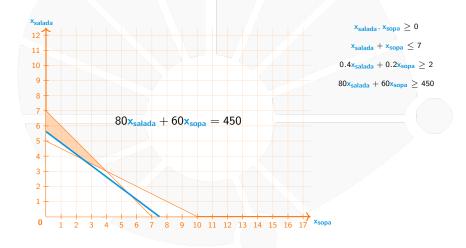
$$0.4x_{\text{salada}} + 0.2x_{\text{sopa}} \ge 2$$


$$x_{salada} + x_{sopa} \le 7$$

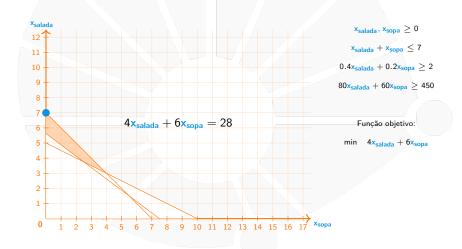
$$\mathbf{x}_{salada}, \mathbf{x}_{sopa} \geq 0$$



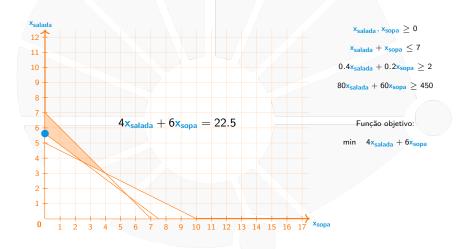


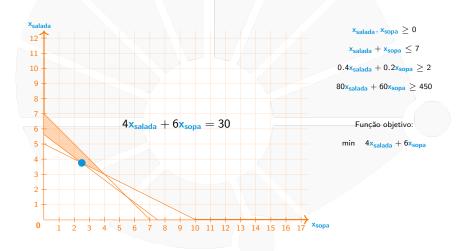


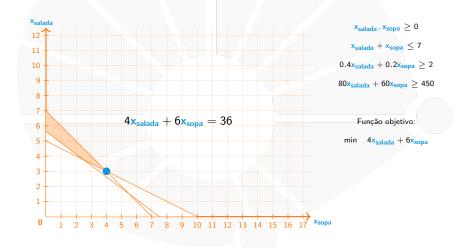



















#### Exemplo. Almoço generalizado

Suponha que há m pratos e n nutrientes, onde cada 100g do i-ésimo prato, há  $\eta_{i,j}$  unidades do j-ésimo nutriente e  $\mathbf{f_i}$  miligramas de gordura. Considere que é necessário o consumo de pelo menos  $\mathbf{N_i}$  unidades do i-ésimo nutriente e que o peso total do almoço não pode ser maior que W gramas.



#### Exemplo. Almoço generalizado

Suponha que há m pratos e n nutrientes, onde cada 100g do i-ésimo prato, há  $\eta_{i,j}$  unidades do j-ésimo nutriente e  $\mathbf{f_i}$  miligramas de gordura. Considere que é necessário o consumo de pelo menos  $\mathbf{N_i}$  unidades do i-ésimo nutriente e que o peso total do almoço não pode ser maior que W gramas.

Quantas gramas de cada prato devem ser consumidas de forma que se satisfaçam os requerimentos alimentares e se minimize o consumo de gorduras?



Variáveis:



Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.



Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

Programa linear:



Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

Programa linear:

$$\min \qquad \sum_{i=1}^m f_i \mathbf{x_i}$$



Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

Programa linear:

$$\min \qquad \sum_{i=1}^m f_i \mathbf{x_i}$$

s.a :



Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

Programa linear:

$$\min \qquad \qquad \textstyle \sum_{i=1}^m f_i \mathbf{x_i}$$

s.a :

$$\sum_{i=1}^{m} \eta_{i,j} \mathbf{x_i} \ge N_j \ \forall 1 \le j \le n$$



#### Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

#### Programa linear:

$$\min \qquad \qquad \textstyle \sum_{i=1}^m f_i \mathbf{x_i}$$

$$\sum_{i=1}^{m} \eta_{i,j} \mathbf{x_i} \ge N_j \quad \forall 1 \le j \le n$$

$$\sum_{i=1}^{m} \mathbf{x_i} \le \frac{W}{100}$$



#### Variáveis:

 $x_i$ , quantidade (em 100g) do i-ésimo prato para o almoço.

#### Programa linear:

$$\min \qquad \qquad \textstyle \sum_{i=1}^m f_i \mathbf{x_i}$$

$$\sum_{i=1}^{m} \eta_{i,j} \mathbf{x_i} \ge N_j \quad \forall 1 \le j \le n$$

$$\sum_{i=1}^{m} \mathbf{x_i} \le \frac{W}{100}$$

$$\mathbf{x_i} > 0 \qquad \forall 1 < i < m$$



Dado um programa linear, temos três possibilidades:



Dado um programa linear, temos três possibilidades:

 O problema ié INVIÁVEL, ou seja, o conjunto de soluções viáveis é vazio.



Dado um programa linear, temos três possibilidades:

- O problema ié INVIÁVEL, ou seja, o conjunto de soluções viáveis é vazio.
- O problema é ILIMITADO, ou seja, o conjunto de soluções viáveis não é vazio e, para qualquer solução viável x, existe uma solução viável x' tal que c<sup>t</sup>x' é estritamente melhor que c<sup>t</sup>x.



Dado um programa linear, temos três possibilidades:

- O problema ié INVIÁVEL, ou seja, o conjunto de soluções viáveis é vazio.
- O problema é ILIMITADO, ou seja, o conjunto de soluções viáveis não é vazio e, para qualquer solução viável x, existe uma solução viável x' tal que c<sup>t</sup>x' é estritamente melhor que c<sup>t</sup>x.
- O problema é SOLÚVEL, ou seja, existe pelo menos uma solução ótima x\*.

# Equivalências algébricas



#### Existência da forma padrão

#### Para todo programa linear:

min 
$$c^T \mathbf{x}$$
  
s.a: 
$$\begin{cases} A_1 \mathbf{x} & \leq b_1 \\ A_2 \mathbf{x} & \geq b_2 \\ A_3 \mathbf{x} & = b_3 \\ \mathbf{x} \in \mathbb{Q} \end{cases}$$

#### Existe um equivalente em forma padrão:

max 
$$c'^T x$$
  
s.a: 
$$\begin{cases} A'x & \leq b' \\ x \in \mathbb{Q}_+ \end{cases}$$



# Função objetivo

$$\min c^T \mathbf{x} \equiv \max -c^T \mathbf{x}$$



#### Restrições de desigualdade

Cara restrição da forma  $\sum_{j=1}^n a_{ij} \mathbf{x_j} \geq b_i$  é equivalente a  $\sum_{j=1}^n -a_{ij} \mathbf{x_j} \leq -b_i$ :

$$Ax \ge b$$
  $\equiv$   $-Ax \le -b$ 



## Restrições de igualdade

Cada restrição da forma 
$$\sum_{j=1}^{n} a_{ij} \mathbf{x_j} = b_i$$
 é equivalente a  $\sum_{j=1}^{n} a_{ij} \mathbf{x_j} \leq b_i$  e  $\sum_{j=1}^{n} a_{ij} \mathbf{x_j} \geq b_i$ :

$$A\mathbf{x} = b$$
  $\equiv$   $A\mathbf{x} \leq b$   $A\mathbf{x} \geq b$ 



# Transformando em restrições de igualdade

A cada restrição da forma  $\sum_{j=1}^{n} a_{ij} \mathbf{x}_{j} \geq b_{i}$  podemos adicionar uma nova variável  $\mathbf{y}_{i} \in \mathbb{Q}_{+}$  e obter a restrição equivalente  $\sum_{i=1}^{n} a_{ij} \mathbf{x}_{j} - \mathbf{y}_{i} = b_{i}$ :

$$Ax \ge b$$
  $\equiv$   $(A, -I)(x, y) = b$ 



# Transformando em restrições de igualdade

A cada restrição da forma  $\sum_{j=1}^{n} a_{ij} \mathbf{x}_{j} \leq b_{i}$  podemos adicionar uma nova variável  $\mathbf{y}_{i} \in \mathbb{Q}_{+}$  e obter a restrição equivalente  $\sum_{i=1}^{n} a_{ij} \mathbf{x}_{j} + \mathbf{y}_{i} = b_{i}$ :

$$Ax \ge b$$
  $\equiv$   $(A, I)(x, y) = b$ 



#### Domínio das variáveis

Se, para algum  $1 \le i \le n$ ,  $x_i$  não precisa ser maior ou igual que zero, então cada ocorrência de  $x_i$  pode ser substituída por  $\mathbf{x}_i' - \mathbf{x}_i''$ , onde  $\mathbf{x}_i', \mathbf{x}_i'' \in \mathbb{Q}_+$  são duas novas variáveis não negativas.



# Sobre formulações





Vamos fazer alguns exercícios?







## Exercício 1. Transporte aéreo

Home Run é uma companhia de transporte que assinou um contrato para transportar munições, armas e medicamentos em dois aviões, um Airbus e um Boeing. O cliente aceitou receber todo o que a companhia conseguisse transportar, assim Home Run deseja maximizar o lucro atendendo às seguintes restrições:

|              | Densidade $(kg/m^3)$ | Lucro (\$/kg) |
|--------------|----------------------|---------------|
| Munições     |                      |               |
| Armas        |                      | \$30.00       |
| Medicamentos |                      |               |

|        | Peso máximo | Capacidade<br>máxima |
|--------|-------------|----------------------|
| Airbus |             |                      |
|        |             |                      |

No máximo 100kg de medicamentos podem ser transportados em cada envio (combinando os dois aviões)



#### Exercício 1. Transporte aéreo

(a) Proponha um programa linear para o problema, explique o significado das variáveis e das restrições.

(b) Escreva um programa linear equivalente em forma padrão.

(c) Generalize a sua formulação para *m* produtos diferentes e serem transportador em *n* aviões.



#### Exercício 2. Barco de carga

Um barco de carga possui três seções para estocar mercadorias: frente, meio e fundo. No barco o peso das mercadorias deve estar distribuído na mesma proporção que os limites de peso para cada seção. Os limites de peso e espaço das seções e do barco são dados a seguir:

|  |        | Weight | Space                     |  |
|--|--------|--------|---------------------------|--|
|  | Front  |        | 90 <i>m</i> <sup>3</sup>  |  |
|  | Middle |        | 110 <i>m</i> <sup>3</sup> |  |
|  | Tail   |        | 60 <i>m</i> <sup>3</sup>  |  |

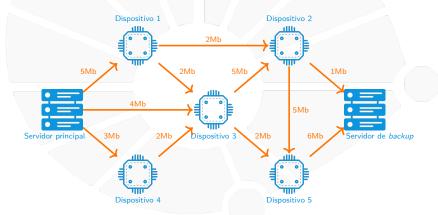
|           | m <sup>3</sup> /t | \$/t |
|-----------|-------------------|------|
| Product 1 |                   | 280  |
|           |                   | 360  |
| Product 3 |                   | 320  |
|           |                   |      |

Considere três mercadorias: **Mercadoria 1**, **Mercadoria 2** e **Mercadoria 3** com limites respectivos: 20t, 16t e 25t. Se o objetivo é maximizar o lucro:



#### Exercício 2. Barco de carga

(a) Proponha um programa linear para o problema, explique o significado das variáveis e das restrições.


(b) Escreva um programa linear equivalente em forma padrão.

(c) Generalize a sua formulação considerando *m* mercadorias diferentes.



#### Exercício 3. Comunicação entre servidores

À empresa Melancia tem uma rede conectando um servidor principal a um de backup. Os valores associados às conexões indicam suas capacidades para envio de dados e os dispositivos podem dividir e juntar pacotes de forma a não perder informação. Qual o tamanho do maior pacote que pode ser enviado do servidor principal ao de backup?





#### Exercício 3. Comunicação entre servidores

(a) Proponha um programa linear para o problema, explique o significado das variáveis e das restrições.

(b) Escreva um programa linear equivalente em forma padrão.

(c) Generalize a sua formulação considerando *m* dispositivos.

# Programação Linear

MC558 - Projeto e Análise de Algoritmos II

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br



