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Abstract—In this paper, we present an algorithm to detect the
presence of diabetic retinopathy (DR)-related lesions from fundus
images based on a common analytical approach that is capable of
identifying both red and bright lesions without requiring specific
pre- or postprocessing. Our solution constructs a visual word dic-
tionary representing points of interest (PoIs) located within regions
marked by specialists that contain lesions associated with DR and
classifies the fundus images based on the presence or absence of
these PoIs as normal or DR-related pathology. The novelty of our
approach is in locating DR lesions in the optic fundus images using
visual words that combines feature information contained within
the images in a framework easily extendible to different types of
retinal lesions or pathologies and builds a specific projection space
for each class of interest (e.g., white lesions such as exudates or
normal regions) instead of a common dictionary for all classes.
The visual words dictionary was applied to classifying bright and
red lesions with classical cross validation and cross dataset valida-
tion to indicate the robustness of this approach. We obtained an
area under the curve (AUC) of 95.3% for white lesion detection
and an AUC of 93.3% for red lesion detection using fivefold cross
validation and our own data consisting of 687 images of normal
retinae, 245 images with bright lesions, 191 with red lesions, and
109 with signs of both bright and red lesions. For cross dataset
analysis, the visual dictionary also achieves compelling results us-
ing our images as the training set and the RetiDB and Messidor
images as test sets. In this case, the image classification resulted in
an AUC of 88.1% when classifying the RetiDB dataset and in an
AUC of 89.3% when classifying the Messidor dataset, both cases
for bright lesion detection. The results indicate the potential for
training with different acquisition images under different setup
conditions with a high accuracy of referral based on the presence
of either red or bright lesions or both. The robustness of the visual
dictionary against image quality (blurring), resolution, and retinal
background, makes it a strong candidate for DR screening of large,
diverse communities with varying cameras and settings and levels
of expertise for image capture.

Index Terms—Diabetic retinopathy (DR), diabetes automated
screening, hard exudate detection, hemorrhage detection, microa-
neurysm detection, red and bright lesion classification, visual
dictionaries.
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I. INTRODUCTION

D IABETIC retinopathy (DR) is the result of microvascular
retinal changes triggered by diabetes that can lead to a

complete loss of sight if not treated in a timely manner. Recent
reports have shown that approximately 25 000 people with dia-
betes go blind every year in the U.S. due to DR [1]. According
to [1], in the U.S. and Europe, DR is the major cause of blindness
for the economically active population and, according to [2], it
is estimated that DR is responsible for 5% of all the world’s
blindness cases.

Early diagnosis of DR and treatment [3] can prevent blind-
ness, and therefore, systematic screening (by specialists) of di-
abetic patients is a cost-effective health care practice [4]. How-
ever, due to the large number of people that require screening
and annual reviews, an automated and accurate screening tool
is a useful adjunct in diabetes clinics. Currently, several highly
accurate programs exist for automated detection of specific DR-
related lesions [5]–[7]. These algorithms require different pre-
and postprocessing steps of the retinal images depending on the
lesion of interest as well as corrections for resolution and color
normalization to account for images with different fields of view
and ethnicity [8].

The presence of microaneurysms and dot hemorrhages (red
lesions) and/or hard exudates (bright lesions) are indicative of
early stage DR. Fig. 1(a) depicts one example with the main
retinal regions highlighted. Microaneurysms are focal dilata-
tions of retinal capillaries [see Fig. 1(b)] and have an appearance
similar to red dots in these images. Intraretinal lipid exudates
(hard exudates) are caused by the breakdown of the blood-
retinal barrier, which leads to fluid rich in lipids and proteins
to leave the parenchyma, causing retinal edema and exudation
[see Fig. 1(c)]. Finally, dot hemorrhages are similar to microa-
neurysms but slightly larger and are found where capillary walls
weaken. These may rupture causing intraretinal hemorrhages
[see Fig. 1(d)].

Automated bright lesion detection has resulted in highly accu-
rate classification and has been discussed recently by [9]–[11].
For automated red lesion detection similar high sensitivity and
specificity has been reported. The Iowa retinopathy online chal-
lenge published results by five research groups using different
algorithms for pre- and postprocessing and detection of microa-
neurysms [12]. More recent results reported by Niemeijer and
colleagues including Giancardo et al. [5] and the group led by
Antal et al. [6] have shown a further improvement.

Addressing the detection of multiple DR-related lesions,
Abràmoff and coworkers combined several different lesion-
specific detectors into a single automatic detection program and

0018-9294/$31.00 © 2012 IEEE



ROCHA et al.: POINTS OF INTEREST AND VISUAL DICTIONARIES FOR AUTOMATIC RETINAL LESION DETECTION 2245

suggested that a single algorithm that is able to identify multi-
ple lesions is required [9]. Bright and red lesions have different
image characteristics and, therefore, require different pre- and
postprocessing making automatic multilesion detection difficult
in practice. A program that allows for multiple lesions to be
detected without requiring different processing of the images
is an important step forward in the development of automatic
retinal fundus assessment programs. Detecting the presence of
a specific lesion or multiple different lesions offers a solution
to improve the accuracy of detecting DR and correctly classi-
fying images for the presence of either specific single lesions
or combinations thereof. Computer-based feature detection has
the advantage of being able to utilize characteristics of images
that do not necessarily correspond to DR-related lesion charac-
teristics but rather use features such as colorization of a region
of interest (RoI) [13] or discontinuities in the image such as
texture, color, or boundaries [14].

In clinical practice, machine vision learning algorithms have
been applied for screening of DR in the southern United States
using content-based image retrieval for automated diagnosis
[15]. This system achieves a sensitivity of 94.8% and a speci-
ficity of 78.7% with an area under the curve (AUC) of 95.3%
but requires extensive pre- and postprocessing to differentiate
between different stages of DR progression and type of lesions.
Web-based applications of machine learning tools have also
been investigated to enhance the uptake of current automated
technologies [16].

This paper introduces an algorithm that addresses several of
the aforementioned issues. The solution is based on a unified
feature detection and analysis framework that is capable of iden-
tifying different DR-related lesions such as hard exudates and
microaneurysms by correlating image specific features with the
presence of specific lesions without the necessity of pre- and
postprocessing of images. The approach utilizes experts to indi-
cate RoIs containing specific lesions and then identifies points of
interest (PoIs) within these regions that become “words” within
a visual dictionary. Our approach extends previous work as it
is independent of the image resolution, color space represen-
tation, and amenable to detect different lesions other than just
microaneurysms. Finally, our approach does not rely on any ad
hoc parameter (e.g., Gaussian standard deviations) nor does it
assume any prespecific size of the lesions such as required by
some of the current microaneurysm detectors in the literature.

The visual word dictionary is based on measuring metrics at
the image level and does not follow a “decision-support tool”
approach, where the system is used to aid diagnosis, as it is
found in most of the current methods. The decision-support
approach requires pinpointing the location of each lesion to
allow the specialist to evaluate the image for diagnosis. In this
case, metrics based on the accuracy of detecting each type of
lesion is more relevant. Using a visual words dictionary as the
basis for a classification algorithm was inspired by the computer
vision and image processing literature [17]–[21], where visual
dictionaries and PoIs are used as a basis for several applications
such as image retrieval and classification.

Section II presents state-of-the-art achievements for auto-
matic DR-related lesion detection. Section III introduces our

method. Section IV reports the experimental setup and the clas-
sification results for different retinal datasets. Finally, Section V
concludes this paper and discusses some considerations regard-
ing directions for future work.

II. DETECTION OF DIABETIC RETINOPATHY LESION

A number of recent reviews on automatic retinal analysis
with emphasis on DR lesion detection have described some of
the major research results in the area. Abràmoff et al. [22] is
a more general review in retinal image processing, while [23]
and [24] are more specific to DR.

Most of the techniques used for automatic DR lesion detection
are based on specific segmentation or feature extraction tech-
niques developed for identifying each specific lesion. These
techniques have been achieving increasing accuracy rates but
normally a technique developed for the detection of one kind
of lesion cannot be directly used to detect another kind. Flem-
ing and colleagues recently reported combining red and bright
lesion detection by adapting their microaneurysm detector to
identify bright lesions but requiring separate processing of the
images depending on whether bright or red lesions detection
was required [11].

Detection of bright or red lesions also relies heavily on
color [25] and thus some color normalization is needed [5],
[8]. Detecting microaneurysms requires additional processing
to remove retinal blood vessels and the optic disk. Thus, detec-
tion and removal of these structures is a necessary initial step
when single-lesion detection is required. Many of the automatic
detectors also use feature size (in terms of pixels) as a crite-
rion [26] and, thus, require preprocessing due to confounding
by image resolution of the absolute pixel size. For these algo-
rithms to function, training and test sets usually have to have
identical resolution for the algorithm to function optimally. An
interesting example is [27] that presents a microaneurysm de-
tector trained on different images for detection in an optometry
clinic.

Single-lesion detectors may also be sensitive to fundus images
with white reflection that is present in retinae of the young [27].
We refer the reader to the recent reviews [23] and [24] for more
details on these techniques.

Including RoI for detection of lesions was reported by Agurto
et al. [28] and [26]. Agurto et al. used 120 regions of 40 × 40
pixels representative of four types of lesions commonly as-
sociated with DR (i.e., microaneurysms, exudates, neovascu-
larization, and hemorrhages). The regions were characterized
using texture descriptors at multiple scales (e.g., cumulative
distribution functions of the amplitude, frequency magnitude,
and relative instantaneous frequency angle). Similar to Agurto
et al.’s approach the method described in this paper also uses
region characterization and performs multiscale analysis of the
images. Our work uses representative regions in the image to
identify lesions and creates a dictionary to capture common
properties among such regions [26]. The main differences to
Agurto et al.’s work is how the regions are characterized and
that our method does not specify a specific size for any of the
RoIs.
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III. VISUAL DICTIONARIES FOR DR DETECTION

In this paper, we present a solution to classify DR-related le-
sions based on the concept of selecting features around locally
invariant interest points and visual dictionaries of images. This
paradigm uses a set of highly extensible feature representations,
and characterizes red and bright lesions in the optic fundus im-
ages using visual words that incorporates information provided
by specialists into a framework easily extendible to different
types of retinal abnormalities.

Two fundamental differences to previous work is that: 1) the
method builds a specific projection space for each class of inter-
est (e.g., exudates or normal regions) instead of using a common
dictionary for all classes; and 2) PoIs are only considered during
training if they fall within the regions in the fundus image high-
lighted by the specialists rather than including all PoIs within
the fundus images when training.

Visual dictionaries constitute a robust representation ap-
proach as each image is treated as a collection of regions. In
this representation, the only important information is the ap-
pearance of each region [18]. Dictionary “words” are not in the
space of images (or patches of images), but at the space of fea-
ture description of the “PoIs” in the image, with the PoIs located
within the RoIs.

The objective when creating a visual dictionary is to learn,
from a training set of examples, the optimal representative PoIs
for a given problem. The dictionary must be large enough to
distinguish relevant differences between images but not include
irrelevant variations [29], [30]. Given a visual dictionary, an im-
age can be represented according to the visual words it contains.

We can summarize the approach that we introduce in this
paper for DR-related lesion detection into two phases: training
and detection. The training phase consists of learning the overall
behavior of the lesions of interest and what makes the images
with lesions different to normal images. The detection phase
consists of using the learned knowledge in an automatic fashion
for testing unknown images. Algorithm 1 presents the main
training steps, while Algorithm 2 shows the detection procedure.
The next sections present details about each step of the approach
described in the two algorithms.

A. Background

Identifying features around locally invariant interest points
was originally developed for large baseline correspondence ap-
plications and has recently been a focus of intense research for
other applications. A few attempts have been made to apply this
model for image retrieval and classification [19], [33]

The PoIs approach is based on the hypothesis that PoIs within
an image convey more information than other points and that
every image in a collection can be represented using a large
number of PoIs. It is then possible to calculate a local descriptor
around each PoI, and store these local descriptors in an indexing
data structure [34]. Local descriptors computed around PoIs
are more robust in identifying subtle changes within images
compared to global descriptors [19]–[21]. The advantage of
using PoIs is that they can be robustly estimated, even if the
image suffers distortions as the major criterion of quality for
a PoI algorithm is repeatability [34]. Robustness of this kind
might be interesting in retinal imagery since small changes can
occur during different equipment setup, motion blur, and small
geometric distortions.

Although the discriminative power of the PoIs is an extremely
important attribute and advantageous to use when searching for
a specific target, they are less than optimal when searching
for complex categories as the ability to generalize becomes
paramount. Therefore, alternative techniques combined with
PoIs are required. A solution is to apply the concept of visual
dictionaries, which considers the high-dimensional descriptor
spaces associated with the PoIs and finds the ones that best
represent the whole set of PoIs by means of a nonsupervised
learning technique (e.g., clustering).

The biggest challenge for developing an accurate algorithm
is to design a good visual dictionary. The creation of the dic-
tionary requires the quantization of the description space that is
achieved using clustering approaches and including the infor-
mation provided by the expert.

B. Identification of Points of Interest

The protocol we devised and followed for our tests are as
follows. To detect bright or red lesions, the specialists mark RoIs
within the retinal images are considered as good representatives
of bright or red lesions. For normal/control images, the entire
retinal region represented in the image can be considered a
RoI. On average 2–5 RoIs for each training image with a given
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Fig. 1. Retina’s main regions as well as examples of DR-related pathologies.
(a) Retina’s main regions. (b) Microaneurysms. (c) Intraretinal lipid exudates.
(d) Hemorrhages.

DR-related lesion are marked by the specialists. The training
stage then locates PoIs within all images. The parameters are a
good tradeoff between classification accuracy and computation
efficiency for finding good representative PoIs.

PoIs are found at discontinuities within the image, being ei-
ther textural or containing some other boundary condition. It is
desirable to choose scale-invariant PoIs in order to achieve a
representation that is robust to possible image transformations
(e.g., rotations, scale, and partial occlusions). There are several
options for finding and characterizing PoIs such as Speeded-
Up Robust Features (SURF) [35] and Scale-Invariant Features
Transform (SIFT) [32]. Both methods achieve high repeatability
and distinctiveness. Empirically, we determined that the results
using SURF were somewhat better than the ones using SIFT;
therefore, we present only results with SURF.

Using SURF, each image in the training set generates a series
of PoIs as illustrated in Fig. 2. All of these PoIs are then filtered
and only PoIs within the RoIs marked by the specialist are kept
for further processing. In Fig. 2, only the points lying within the
dashed RoIs are kept. To cover the most important characteristics
within an image, a reasonable number of PoIs need to be used.
We have found that, normally, 1000 PoIs per image is optimal
within 3–5 RoIs for the images with lesions. Once the PoIs in
an image are found, their neighborhoods are characterized by
means of a local descriptor.

In brief, SURF has two steps: detection of the PoIs and de-
scription of these points. The detection is based on multiscale
decomposition of the image using the convolution of Gaussian
second-order derivatives within the image, at different scales.
The PoI characterization considers a square region of radius
20s centered around the PoI, where s is the scale on which the
point was detected. This square region is then split into regular
smaller 4 × 4 square subregions and, for each subregion, the
method computes a number of features (sums and differences)
at 5 × 5 regularly spaced sample points.

The result of the SURF is a set of PoIs each one represented
in n-dimensions. In this paper, we use each PoI with n = 128

Fig. 2. PoIs located by SURF (white circles) and the RoIs markings performed
by a medical specialist (yellow dashed polygons).

dimensions. For more details about SURF, we refer the reader
to [35].

C. Visual Dictionary

A database of training examples comprising positive images
(i.e., images with bright or red lesions present) and negative
control images (i.e., considered normal by specialists) is created.

As described in Section III-A, SURF is a good low-level
representative feature detector. To preserve the discriminatory
power of such descriptors found by SURF while increasing
their generalization, the concept of visual dictionaries [30] can
be introduced.

After finding the PoIs, a dictionary representing distinctive
features of images with a specific lesion of interest as well as
images tagged as normal by specialists is created. An important
parameter for classification is the number of words k in this
dictionary. A k too low groups together too many PoIs into the
same visual word and looses the ability to distinguish important
information. A k too high memorizes the details of the PoIs in the
training set and looses its ability to generalize. To achieve this,
the clustering task is performed using the k-means algorithm
[36] and all PoIs in normal images are clustered into k/2 groups,
as are the PoIs in the RoI containing bright or red lesions.
This results in a dictionary with k words. Applying k-means
clustering at this stage ensures that the visual dictionary has the
same number of normal and DR-related lesion words. However,
it is not a strict requirement to have the same number of words
for control and DR-related lesions. We have experimental results
showing that, for some lesions, other proportions may be better.
However, in this paper, we focused on a 50%–50% proportion.
We empirically found the dictionary sizes considering a tradeoff
between classification accuracy and computational efficiency.
However, we can employ automatic approaches such as [37] for
this task.

After creating the visual word dictionary, each of the remain-
ing PoIs within the RoIs in the training images are assigned to
the closest visual word of the dictionary using a process called
projection or quantization [17], [34]. At the end of the quan-
tization process, each image is represented by a signature or
histogram of the visual words it contains, which is the input
to a machine learning classifier in the last stage. Formally, the
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Fig. 3. Typical signatures for images showing bright and red lesions calculated
based on averaging out all the signatures of the training set considering the aver-
age of a fivefold cross-validation procedure for DR1 dataset (c.f., Section IV-A.
(a) Bright lesions. (b) Red lesions.).

quantization performs a hard assignment (each PoI is attributed
to the closest visual word in the dictionary) and the aggregation
function is the sum [34] (once a PoI is matched to a visual word
the corresponding entry in the signature is increased by one).

Fig. 3 depicts two examples of typical signatures found for
images with and without lesions and provides an indication of
the discriminative power of the proposed approach. Each plot
shows a typical signature for normal images versus images with
either bright or red lesions. The typical signature for images
showing bright and red lesions is calculated based on averaging
out all the signatures of a training set (DR1 in this case, see
Section IV-A).

Specifically, each plot depicts 100 “visual words” and their
frequency in the training set. Positions 1–50 represent lesion-
based visual words (e.g., bright or red lesions in this case) while
positions 51–100 represent words for the normal regions. For
positions 1–50, it is expected that the visual words associated
with lesions dominate (i.e., have a higher frequency of occur-
rence) the normal visual words while the opposite is the case
for positions 51–100.

To perform the final classification, a two-class machine learn-
ing classifier such as a support vector machine (SVM) was
selected [36]. For training the classifier, the signature vectors
of the training images containing examples of images with a
given lesion and normal/control images are fed into the clas-
sifier. To test a new image, its PoIs are located and projected
onto the precomputed dictionary to create its signature vector,
which forms the input to the trained classifier. However, some
PoIs may lie outside the retinal boundary of the image. There-
fore, before the quantization, the PoIs lying within the retinal
boundary are identified by calculating a binary mask of the im-
age using a pixel thresholding procedure and then calculating
the Hough transform [31] of the resulting binary mask. Other
possible algorithms could be used but the Hough transform is
simple and fast. The rationale for its use is that the binary mask
of a retinal image can contain several image portions not related
to the retina. The Hough transform then finds the best circle
that encompasses the retina. Fig. 4 shows an example of a reti-
nal image, its binarization, and the resulting Hough transform
delimited retinal portion.

Fig. 5 summarizes the sequence of steps of the proposed ap-
proach (training and detection) and illustrates what we discussed
earlier in Algorithms 1 and 2.

IV. EXPERIMENTS AND VALIDATION

In this section, we present the experimental methods and
results that we used to validate the approach. The experiments
are divided into two parts.

1) Part #1. Experiments for identifying the optimal number
of words representing the classification dictionary using
the DR1 dataset described shortly. Here, we use a cross-
validation protocol dividing the DR1 dataset into fivefolds.
The SVM parameters are tunned to the training examples
(four out of the fivefolds) and that parameterization is used
on the remaining (not used) fold. As this refers to a five-
fold cross-validation protocol, each time the testing fold
changes, the parameters are recalculated on the appropri-
ate training sets.

2) Part #2. Experiments using cross dataset classification
based on the visual word dictionary approach. Here, we
use the a cross-database validation protocol in which we
train on DR1 images and test on RetiDB and Messidor.
The SVM is tunned on all examples in the DR1.

No pre- or postprocessing was undertaken prior to training
and classification. All experiments use SURF with 128 dimen-
sions for finding the PoIs and SVM as the final classification
method. The results are reported as ROC curves. In both exper-
iment sets, the SVM parameters are found using the standard
LibSVM’s grid search fine tuning algorithm [38].

A. Experiments—Part #1

The first part of our experiments was conducted using the
DR1 dataset from the Ophthalmology Department of the Federal
University of São Paulo, collected during 2010. The images
are clinical images from all retinal patients of the department,
including a diverse range of patients.
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Fig. 4. Constraining the analysis of normal retina image using Hough transform. (a) Original image. (b) Its binarization. (c) Result of a Hough transform to
delimit the retina’s region.

Fig. 5. Sequence of steps for classifying DR lesions (e.g., bright or red lesions) from fundus images.

The DR1 dataset comprises 1014 images with an average
resolution of 640 × 480 pixels, (687 are normal retinae, 245
images contain bright lesions, 191 contain red lesions, and 109
contain signs of both bright and red lesions). All of the images in
the DR1 dataset were manually annotated for DR-related lesion
(presence/absence) by three medical specialists. For each image,
the specialist tags the image as having or not having bright or red
lesions. All of the images in which the three agree were kept in
the final dataset. The RoIs were marked on some of the images
with red, bright, or both lesions by a single ophthalmologist
with five years of experience. The expert draws a boundary
surrounding the lesion(s) and thus creates a RoI in the digital
training images (see Fig. 2). The images were captured using
a TRC50X (Topcon Inc., Tokyo, Japan) mydriatic camera with
maximum resolution of one megapixel and a field of view (fov)
of 45◦. This dataset is publicly available1 and adds to currently
existing images [39], [40].

In the first part of the experiments, we explored the impor-
tance of how the number of words considered to characterize
each lesion in the creation of the dictionary influences the out-
come of the detector. We also investigated how changing the
discriminatory power of the SURF PoIs, that is the space sur-
rounding the PoIs, influenced the classification outcome and

1http://www.recod.ic.unicamp.br/site/asdr/

determined empirically that the characterization of PoIs contain-
ing 128 orientations is more effective than using 64 orientations.
A possible reason for this can be that discontinuities associated
with lesions have a higher number of subtle characteristics that
require more orientations to be captured. The results of training
the classifier using the DR1 dataset are based on the average of
a fivefold cross-validation procedure (five independent evalua-
tions of the full algorithm using at each time onefold as test and
the remaining four as training).

Fig. 6 shows the ROC classification results for images with
bright and red lesions with the best and worst dictionary sizes.
For bright lesions, the best-performing dictionary size consisted
of 500 words (250 bright lesions-based words plus 250 normal-
based words) with a corresponding AUC = 95.3%. For refer-
ence, at 90% sensitivity, the system achieves 87% specificity.
The worst performing dictionary size was 50. For red lesions,
the differences among the different dictionary sizes are not as
significant, but nevertheless, the best performing dictionary has
200 words (100 for lesion-based words and 100 for normal),
with a corresponding AUC = 93.3%. For reference, at 90%
sensitivity, the system achieves 83% specificity.

In the case of bright lesion classification, there is a large dif-
ference between the characterizing PoIs for bright lesion and
nonlesion structures and a 500-word, being a sparse large dic-
tionary, is able to best capture the characteristics associated with
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Fig. 6. Classification results for images showing bright and red lesions using
visual dictionaries. Experiments were performed with fivefold cross validation
using the DR1 dataset. The two ROC curves for red and bright lesions represent
the best and worst choices for the dictionary size. AUC = 95.3%. for bright
lesions, AUC = 93.3% for red lesions.

white lesions. On the other hand, for red lesions and some nonle-
sions, the PoIs are more difficult to differentiate, which means a
small and dense (200-word) dictionary is more appropriate since
the visual words quantified is the main factor that distinguishes
among these.

B. Experiments—Part #2

The second part of our experiments consisted of cross dataset
classification. The experiments were conducted using the DR1
dataset as the training data and the RetiDB and Messidor datasets
as the testing datasets. The dictionary size was fixed based on
the outcome of experiments in Part #1.

The RetiDB2 dataset contains 22 normal images, 71 images
tagged as having bright lesions, and 106 tagged as having red
lesions. The images are in 1500 × 1152-pixel resolution. An
image can be normal or contain either bright, red, or both lesions.

The Messidor3 dataset contains 1200 images with three reso-
lutions (1440 × 960, 2240 × 1488, or 2304 × 1536 pixels). The
images are tagged by specialists according to the following.

1) Risk of macular edema: whether or not the image con-
tains hard exudates. It comprises three groups, G0,1,2 . G0
contains images with no visible exudates and G1,2 con-
tain images with exudates. For our experiments, we used
all the images in these three groups. Groups G1 and G2
together contain 226 images.

2) Retinopathy grade: grading was performed with respect
to the presence of red lesions. The grading resulted in
four groups (Risk1,2,3 and normal images). We consid-
ered the normal images and the Risk2 and Risk3 images
only, which contain examples of, at least, five microa-
neurysms or at least one hemorrhage spot. The Risk2 and
Risk3 groups contain 247 and 254 images, respectively.

2http://www2.it.lut.fi/project/imageret/diaretdb1/
3http://messidor.crihan.fr

Fig. 7. Cross training-testing classification results for images showing bright
and red lesion classification. Training with the DR1 dataset and testing over the
RetiDB dataset. AUC = 88.1% for bright lesions and AUC = 76.4% for red
lesions.

Currently, our approach still does not classify images with
less than five spots of MAs. Therefore, we did not include
Risk1 in this paper.

The normal group contains 546 images with no lesions.
During training, the parameters of the SVM were automati-

cally determined using the standard LibSVM’s grid search fine
tuning algorithm [38] on the DR1 images only. The best SVM
parameters were SVM regularizer C = 32.0 and the kernel RBF
parameter γ = 0.0078125 for the bright lesion classifier. For the
red lesion classifier, C = 8.0 and γ = 0.03125.

Fig. 7 shows the cross dataset classification results for images
with bright and red lesions for RetiBD. For bright lesion detec-
tion, our approach used a dictionary with 500 words and resulted
in an AUC = 88.1% with images from the RetiDB dataset. For
comparison purposes, [41] provides results using the RetiDB
dataset for training and classification. The authors reported a
70%/99% sensitivity/specificity result. For this level of sensi-
tivity, our approach results in 85% specificity. However, in our
case the training data does not include any images from RetiDB.
For red lesions, our method achieved an AUC = 76.4%. For ref-
erence, at 90% sensitivity, the cross dataset method yielded a
60% specificity.

Fig. 8 depicts the classification results for Messidor images
showing bright lesions, and three results for red lesions: the
result for Risk2 and Risk3 separated, and the union of both
sets. For bright lesions, AUC = 89.3%, and for a 90% sensi-
tivity the result was a 64% specificity. For red lesions, AUC =
86.2%, 63.3% and 72.2% for Risk3 alone, Risk2 alone, and both
combined.

The results for red lesions show a negative characteristic of
our method—it is somewhat sensitive to the number of red le-
sions, and images with a low number of red lesions are not
detected as such. We are currently exploring two alternatives
to explain this limitation, and correct it. The first explanation
is that the PoI detector in SURF is not detecting most of the
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Fig. 8. Cross dataset training-testing classification results for images showing
bright and red lesions classification. Training with the DR1 dataset and testing
over the Messidor dataset. AUC = 89.3% for bright lesion and AUC = 86.2%,
63.3%, and 72.2% for Risk3 alone, Risk2 alone, and both combined.

points relevant to detection of the red lesion (microaneurysms,
MAs). Indeed, the PoI in SURF uses discontinuities to mark a
point as interesting, and sometimes MAs are not too different to
their surroundings—and that is why they are so hard to detect. If
this explanation is correct, then there are two alternatives to im-
prove the results for a low number of MAs: either preprocessing
the image so that MAs become more discontinuous from their
surroundings, and thus more likely to be detected by SURF, or
dropping SURF’s point detection itself and performing a more
dense sample of the retina, following the method used by Li and
Perona for general scene categorization [29].

The alternative explanation is that the points are being de-
tected, but they are too few that their influence on the image
signature is too small to be detected by the learning method
(SVM). A solution to the problem is to alter the quantization
step. The current quantization is a hard assignment with sum
aggregation. There are alternatives of soft assignment (each PoI
is attributed to all visual words inversely proportional to its dis-
tance) and the aggregation using the max function (each entry
remembers only the largest PoI attribution).

V. CONCLUSION

Automated screening algorithms need to be accurate in de-
tecting lesions, identifying the type of lesions, be easily applied
across diverse populations and the use of different image captur-
ing equipment. Locating precisely a specific lesion necessitates
extensive pre- and postprocessing of images. In addition, similar
acquisition conditions are often needed for good performance.
This is not often possible in large screening programs and pro-
cessing centers, where local screening programs often use dif-
ferent technologies, have varying expertise in image capture
and consist of diverse ethnic groups. Therefore, an automated
method needs to be robust against these conditions. The ap-
proach described in this paper addresses these issues by being
able to identify the presence of specific lesions.

The objective of this paper was to describe a solution for de-
tecting different lesions (a task that normally require different
preprocessing depending on the lesion) without deploying any
pre- or postprocessing operations. We introduced a visual word
dictionary-based approach that applies PoIs and visual dictio-
naries for classifying bright or red lesions found in optic fundus
images.

The main requirement of the method was to use a training
set where ophthalmic specialists have marked RoIs within the
retinal image that contain the lesion. The approach automatically
calculates PoIs that are representative and highly distinctive of
such regions and, at the same time, are scale-invariant and robust
to some image transformations. The method builds a powerful
visual dictionary upon the PoIs. After the projection of the PoIs
of a test image onto the dictionary (projection) space, the method
uses a machine learning classifier to point out the classification
of such an image.

The novelty of our approach is in the characterization of
lesions using visual words that incorporate information such
as texture and boundary discontinuities with the specialists’
knowledge in a framework easily extendible to different types
of DR-related lesions. The approach also extends the cur-
rent state-of-the-art dictionary-based classification techniques
(e.g., [17]–[21]) by building a specific projection space for each
lesion of interest (e.g., normal, bright, or red lesions) instead
of a common dictionary for all types of lesions. This has the
advantage of correctly capturing the subtleties of the lesion of
interest and avoiding areas of the image dominating the calculus
where no lesions are present as is the case for the majority of
images. Finally, the incorporation of RoIs as defined by the spe-
cialists, which then define the boundaries within which the PoIs
are located into the dictionary calculus is also innovative. Cur-
rent state-of-the-art dictionary-based classification techniques
tend to find PoIs anywhere in the training images and not within
specific RoIs.

We validated the proposed approach with a series of experi-
ments on publicly available datasets of retinal images. Our work
adds to previous reports using cross dataset training, which is
an important area of research and an important component in
clinical practice where classifiers cannot always be trained on
an identical image set (same camera, resolution, operator, FOV)
that needs to be classified.

The best results were achieved using SURF, for the detection
and description of the PoIs and a visual dictionary with 500
visual words for images showing bright lesions and 200 visual
words for images showing red lesions. The approach achieved
results comparable to those in the literature. However, compar-
ing our results for classification of bright or red lesions directly
is difficult as our classifier classifies the images as having signs
of specific lesions and accuracy is not determined by identifying
the correct location.

By focusing on the goal of image-based metrics, as op-
posed to DR-related lesion detection per se, the method is
able to learn what images containing the lesion “look like”
(based on the quantity and distribution of the visual words
in the image) instead of detecting the lesion in the image
itself.
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The visual dictionary is an elegant method to learn and rep-
resent important features of a specific lesion, and allows clas-
sifying whether or not an image contains these lesions with a
unified approach. This approach is independent of the image
resolution, color space representation, and does not assume any
specific size of the lesions. Furthermore, the approach is robust
across differences in the appearance of the lesions and the retina
across different ethnicities. In [14], we report the result of ap-
plying this technique on Australian aboriginal cases, with better
results than any other approach published.

Cross-dataset learning—training of one dataset to test the
performance on an entirely different dataset—is the ultimate
test to expose the weaknesses and robustness of a method. As
we report here, it showed us that there is still some room for
improvement and adjustment on the deployment details of our
approach. We strongly believe the community as a whole should
adopt this validation procedure from now on.

A. Future Work

This paper has shown how to construct detectors for two of
the most common lesions in DR. The work continues in three
different directions. As mentioned, the red lesion detector is still
dependent on the number of spot signs in the images. We are
currently exploring the alternatives discussed in Section IV-B—
pre-processing the image, dense SURF, and soft quantization
with max aggregation [34].

On the other hand, it is possible that even a combination of
techniques will not be enough to detect a very small number
of microaneurysms. However, retinae with fewer than three mi-
croaneurysms have a higher disappearance rate compared to
retinae with four or more aneurysms. This suggests that the
identification of five microaneurysms can be seen as the stage
where a referral is necessary [42], [43]. Our results are in line
with current clinical practice as the Wisconsin work was based
on seven-field ETDRS criteria and the U.K. prospective study
on four retinal fields while current automated screening uses
one or two retinal views (foveal field and optic disk centered).
Microaneurysms outside of the foveal field are not immediately
sight threatening and only 50% of microaneurysms were within
this region reported by Klein et al. [44]. A plausible conclu-
sion is that, for screening purposes, detection of less than five
microaneurysms is not that useful.4

The second direction of future research involves the develop-
ment of an automatic DR screening system, that can detect the
presence of many abnormalities related to DR. Thus, we are de-
veloping detectors for other lesions (cotton wool spots, drusen,
superficial hemorrhage, neovascularization) and defining a way
to combine the output of each of these detectors into a single
decision on whether or not the patient should be referred to a
specialist and the level of disease progression. The development
of other detectors follows in part the steps laid down by the two
detectors described herein—detecting PoIs, mapping them to
visual words and learning a classifier to distinguish the differ-
ent histograms. However, not all forms of lesions are equally

4Personal Communication, Allan Luckie, Albury Eye Clinic, Australia.

Fig. 9. Results with combining the two detectors with an OR. The average
result of a fivefold cross validation on DR1 alone. The images are only the ones
in DR1 where either bright or red lesions were detected. AUC = 95.2%.

amenable to such approach—and some of them may require
some changes to the process. For example, neovascularization
suffers the problem of not having highly discontinuous points
to be detected by SURF, and thus we are following the dense
traditional SURF approach in such cases.

The third direction of future research is how to combine the
results of each of the detectors. In principle, the combination
is simple if any detector identifies a lesion, the patient should
be referred to the specialist. This is what we call an OR-rule.
Fig. 9 presents the result of using the OR rule for red and bright
lesion fusion. The figure shows the average of a fivefold cross-
validations using the DR1 data. The combination of detectors
has a promising AUC of 95.2. But we can go beyond the OR-
rule. The SVM classifiers used in the detectors may return not
just the class to which the image belongs to, but some measure
of distance of that image to the boundary region. Thus, we can
use this information to combine the results in other ways. For
example, if all identify that the image is normal but with a low
certainty of that determination (this may be the case if there
are dust particles captured in the image during photography), it
might be prudent to refer the patient to the specialist. We are
currently exploring some of these alternatives to combine the
output of each detector.
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