Reading again the description of Landini's file, I found out that
  the `%' and `!' marks should have been handled differently from the way
  I did. 
  
  Also, looking at the actual shape of the characters, I realized that
  the FSG encoding was not very good for my purposes, since is assigns
  completely different codes to glyphs which may be just calligraphic
  variations of the same grapheme.
  
  Thus I decided to redo everything from the beginning, using a 
  more analytical encoding.  
  
  I considered using Jacques Guy's "Neo-Frogguy" or "Gui2" encoding, but even
  that is a bit too synthetic --- for example, his <2> should be "i'",
  and his <9> should be `c)', for consistency. (The statistics on the
  occurrence of repeated <i>s apparently confirm this choice).
  
  Thus I decided to define my own "super-analytic" or "SA" encoding.
  The idea is to break all characters doen to individual "logical"
  strokes, and use one (computer) character to encode each stroke.
  
  There is some question as to what is a logical stroke, and when two
  strokes are different.  Obviously, the definition of a stroke must
  include not only its shape but also the way it connects to the
  neighboring strokes; and, given the irregularity of handwritten
  glyphs, that may be hard to decide.
  
  For instance, FSG's [A] character can be broken down into two
  strokes, shaped like the [C] and [I] glyphs.  Supposedly, the
  difference between an [A] and a [CI] is that in the former the
  strokes are connected into a closed shape.  Is this difference
  significant?
  
  I checked the occurrences of [CI], [CM], and [CN] in the interlinear
  file.  Two things are curious. First, these combinations are
  extremely rare.  Second, a good many of them are transcribed
  differently by Currier and the FSG: where one has [CIIR] the other
  often has [AIR], and vice-versa.  Same for [CM] versus [AN], etc.
  
  In light of these observations, I have decided to treat all
  occurrences of [A] as [CI]. If the two are indeed different, that
  will be just one more ambiguity added to the inherent ambiguity of
  natural language; so it cannot make the decipherment task more
  difficult.  Confusing the two will change the letter frequencies, it
  is true; but, since the language does not appear to be a
  standardized one, there is not much information we can extract from
  absolute letter frequencies.  The methods we hope to use --- such as
  automaton analysis --- are not significantly disturbed by collapsing
  letters.
  
  On the other hand, if [A] and [CI] are the same grapheme, using
  different encodings will seriously confuse statistics --- especially
  if the spacing depends on the immediate context.
 
  I took the file bio-c-evt.txt and removed all `%' from it.  Many of them
  should have been spaces, but so what.
  
  I also added a space before and after each line; that may be helpful
  when doing greps.
  
       lines   words     bytes file        
      ------ ------- --------- ------------
         765    7227     39823 bio-c-evt.txt

  Next I applied a recoding:
  
    cat bio-c-evt.txt \
      | fsg2jsa \
      > bio-c-jsa.txt

  Next I extracted words:
  
    cat bio-c-jsa.txt \
      | tr ' ' '\012' \
      | egrep '.' \
      > bio-c-jsa.wds
      
    cat bio-c-jsa.wds \
      | sort \
      | uniq \
      > bio-c-jsa.dic
      
    cat bio-c-jsa.wds \
      | sort \
      | uniq -c \
      | sort +0 -1nr \
      > bio-c-jsa.frq

     lines   words     bytes file        
    ------ ------- --------- ------------
       765    7227     61678 bio-c-jsa.txt
      7227    7227     60144 bio-c-jsa.wds
      1687    1687     17398 bio-c-jsa.dic
      1687    3374     30894 bio-c-jsa.frq

  Next I separated the good words:
  
    cat bio-c-jsa.wds \
      | egrep '^[a-z+^]*$' \
      > bio-c-jsa-gut.wds
  
    cat bio-c-jsa.dic \
      | egrep '^[a-z+^]*$' \
      > bio-c-jsa-gut.dic
      
    bool 1-2 bio-c-jsa.dic bio-c-jsa-gut.dic \
      > bio-c-jsa-bad.dic

     lines   words     bytes file        
    ------ ------- --------- ------------
        34      34       270 bio-c-jsa-bad.dic
      6420    6420     57560 bio-c-jsa-gut.wds
      1653    1653     17128 bio-c-jsa-gut.dic
 
  Next I buit the automaton:
  
    cat bio-c-jsa-gut.dic \
      | nice MaintainAutomaton \
          -add - \
          -dump bio-c-jsa-gut.dmp

     strings  letters    states   finals     arcs  sub-sts lets/arc
    -------- --------  -------- -------- -------- -------- --------
        1653    15475      1373      178     2609     2234    5.931
        
  Note that the efficiency increased, even though the words got considerably
  longer!
  
  I ran AutoAnalysis, looking for unproductive states (2 words or less) and
  strange words:
  
    nice AutoAnalysis \
      -load bio-c-jsa-gut.dmp \
      -unprod bio-c-jsa-gut-1-unp.sts \
        -maxUnprod 2 \
        -unprodSugg bio-c-jsa-gut-1-unp.sugg

      546 unproductive states
      826 strange words (with repetitions) listed
      389 strange words (without repetitions) listed
      
   I redid again, considering a state unproductive if it is used by only one
   word):
   
      nice AutoAnalysis \
        -load bio-c-jsa-gut.dmp \
        -unprod bio-c-jsa-gut-2-unp.sts \
          -maxUnprod 1 \
          -unprodSugg bio-c-jsa-gut-2-unp.sugg
        
       266 unproductive states
       266 strange words (with repetitions) listed
        96 strange words (without repetitions) listed

   Here are the strange words:
   
      ccljtciix ccqgtccy cgciiiivciiscyixcy cgciiiixciixcgcy
      cgciixcyiscg cgciixljccccyiscy cgcstoixcycg cgctcljtccgcy
      cgcyixctccs cgcyqoljoix cgixctciscy cgoisctccgctccy
      cgoixcccsoixctccy cicstcyqjcccg ciixcstclgccy cqgciixoiis
      cqjtcyljoisoix csciixcstcqjtcgcy csciixctqjccgcyqjciis
      cscstoixcstccqjtcy csolgctciij csqjoixqgctcy cstccgljcoixcy
      cstcoisoixljctcgcy cstixctcis cstocqgtccgcy cstqjciixctcccgcy
      ctccgciiivcgci ctccgcyqjctcg ctccicgis ctcciixisois ctccycsctcy
      ctccyqcyqjciiiiv ctcoixqjciiivcscy ctcstccljtcy ctixctqgcstcccy
      ctoixljccccy cycgoixcstcccy cycqgciiiiv cyisoqjccy
      cyljccgcicqgtcy cyqjcccsoixcgcy cyqjctixctccgcy cyqjctoisoixljcy
      cyqoixcyqois iixqgctcgcy isoisciisoix ixcsciiis
      ixctccgcyisqgctccgcy ixixcgcyis ixixciiiiscy ixlgctcciix
      ixoixljccgcyljciiivoix lgctccgcyljciiscy ljccgcyqgocstcy
      ljciixcyctccy ljoisoiiivcy ljoqjciixcy ocstcqgoixcs ocycstccy
      oisciiisciiso oixcstciixcscy olgciixcstcljcy olgctcivcycs
      oljciixctccgcyqjoiscy oqjciisqgcccgcy qcljcyqjccgciis
      qcsoixljcccgcy qcyisctcs qgcgciixcstois qgciixcgciisciiisciix
      qgcstctccgciix qgcstoixqgctclgtcgcy qgctccyljccciis
      qgoisciixcstcy qgoixcccgciisciiv qgoixqjccstoix qgoqjctoljciis
      qjccciixciiiv qjccyqjccj qjcoixcstcoix qjctcgoixqjcgcy
      qjctciixoixljcc qjcyqoljcy qjocqjtccy qjoisoixcstcscgcy
      qjoixoiscstcccy qoljciixljcoix qoljcyisixcstc qoljcyixcgcgcy
      qoqjcgcgcyciis qoqjcyqjcyqjois qoqjixoixljciix qoqjoisciixoij
      qoqoljcccy qqgoixljciiiv

  I looked for popular states and radicals:
  
    nice AutoAnalysis \
      -load bio-c-jsa-gut.dmp \
      -classes bio-c-jsa-gut-1.cls \
        -minClassPrefs 5 \
        -radicals bio-c-jsa-gut-1.rad

     77 lexical classes found

  The output wasn't very illuminating, though.  I looked for productive
  states instead:

    AutoAnalysis \
      -load bio-c-jsa-gut.dmp \
      -prod bio-c-jsa-gut-1-prd.pst \
      -minProductivity 1 \
      -maxPrefSize 30 \
      -maxSuffSize 30 

  Here is the result:
  
     nprefs  nsuffs  nwords  prodty  prefs/suffs
    ------- ------- ------- -------  -----------------
         40       2      80      39  { qoqjciisc, qoljcctcc, qoljcccc, ... }:{ gcy, y }
         35       2      70      34  { qoqjcccs, qoljcio, qoixoix, ... }:{ (), cy }
         24       2      48      23  { qgciii, oljciiii, oisciiii, ... }:{ iv, v }
         15       2      30      14  { qoljccii, ctccgcyi, cgctoi, ... }:{ s, x }
          7       3      21      12  { qoixctcc, qoccc, oqjccc, ... }:{ cgcy, gcy, y }
         12       2      24      11  { qoljccgci, qljo, qjoixcstco, ... }:{ is, ix }
         11       2      22      10  { oixqjcc, ixqjcc, cgcyljcc, ... }:{ cgcy, gcy }
         10       2      20       9  { cyctccgc, qoqjciixcgc, ... }:{ iis, y }
          4       4      16       9  { qoixcstcc, ctcqjtc, qoqjcstc, ... }:{ cgcy, cy, gcy, y }
          9       2      18       8  { qoqjciixcg, qoljciixcg, ... }:{ ciis, cy }
          5       3      15       8  { ctccljtc, cstcljcc, csoixctcc, ... }:{ cy, gcy, y }
          5       3      15       8  { qocljtc, qoctc, oisctcc, ... }:{ cgcy, cy, y }
          8       2      16       7  { qocgcc, qcljct, ixocc, ... }:{ cgcy, cy }
          8       2      16       7  { qcljcc, ctccljc, cstccqjc, ... }:{ cy, y }
          7       2      14       6  { qoqgcst, oqjciixcst, qoixqjc, ... }:{ ccgcy, cgcy }
          4       3      12       6  { qoiscc, ljctc, qoljcstc, ... }:{ cgcy, cy, gcy }
          4       3      12       6  { oljcic, ixctccc, cqjtcc, ... }:{ gcy, s, y }
          4       3      12       6  { qjciii, isoii, isciii, csoii }:{ iiv, iv, v }
          4       3      12       6  { qoct, oisctc, ixctccljt, ... }:{ ccgcy, ccy, cy }
          6       2      12       5  { oqgcstccgc, oljcccgc, qjoixcgc, ... }:{ iix, y }
          6       2      12       5  { oixoii, cstcljciii, qoiscii, ... }:{ iiv, iv }
          6       2      12       5  { cgljcc, qgoixljcc, oixljcstc, ... }:{ cy, gcy }
          5       2      10       4  { qgoixctcc, csciixctcc, ... }:{ g, gcy }
          2       5      10       4  { cgctcc, qoqjctc }:{ cgcy, cy, gcy, oix, y }
          5       2      10       4  { qgoixljc, oixljcst, ljoixct, ... }:{ ccy, cgcy }
          5       2      10       4  { qoljciiiv, ctis, oqjcoix, ... }:{ (), cgcy }
          5       2      10       4  { qoljciixct, ocgct, ixljct, ... }:{ ccgcy, ccy }
          3       3       9       4  { qoixciii, oqjciii, oixljciii }:{ iv, s, v }
          2       4       8       3  { cgcc, cgoixctc }:{ ccgcy, cgcy, cy, gcy }
          4       2       8       3  { qjoixcg, qgoixcstcg, cstcg, ... }:{ ciix, cy }
          2       4       8       3  { qoqgctc, ljcstc }:{ cgcy, cy, gcy, oix }
          4       2       8       3  { qoisci, ctcoixljci, csoixljci, ... }:{ iiiv, iiv }
          4       2       8       3  { oljccgcy, oixljcccy, ctoixo, ... }:{ (), is }
          4       2       8       3  { ocljt, ixljccg, ctoixct, ... }:{ ccy, cy }
          4       2       8       3  { qoljctcgcy, oqjccgcy, ... }:{ (), ix }
          2       4       8       3  { qoqjcst, ctcqgt }:{ ccgcy, ccy, cgcy, cy }
          4       2       8       3  { qoqjciiiv, qjccgcy, oixois, ... }:{ (), oix }
          2       4       8       3  { oixqjcii, ocgcii }:{ iiv, iv, s, x }
          2       4       8       3  { oixqjci, ocgci }:{ iiiv, iiv, is, ix }
          3       2       6       2  { oqjccgciii, ctcqjcii, ... }:{ iv, s }
          2       3       6       2  { csciixctc, cgoixcstc }:{ cg, cgcy, oix }
          2       3       6       2  { ixctccgcii, ciisoi }:{ s, scy, x }
          2       3       6       2  { ixctccgci, ciiso }:{ is, iscy, ix }
          3       2       6       2  { oqjoixcgcy, oqgctccgcy, ... }:{ (), ixctccy }
          3       2       6       2  { oqoljc, ctcoljc, ctccyljc }:{ iiiv, y }
          3       2       6       2  { oqolj, ctcolj, ctccylj }:{ ciiiv, cy }
          2       3       6       2  { qoljctcc, ixljccc }:{ g, gcy, y }
          2       3       6       2  { qoljcst, oqjcst }:{ ccgcy, ccy, cgcy }
          3       2       6       2  { qoixqj, qocst, oiscst }:{ cccgcy, ccgcy }
          2       3       6       2  { oqgcstccg, oljcccg }:{ (), ciix, cy }
          2       3       6       2  { qoljcoi, oqgoi }:{ s, x, xcy }
          2       3       6       2  { qoljcs, oqjcs }:{ tccgcy, tccy, tcgcy }