# Last edited on 2014-07-29 12:46:27 by stolfilocal COMPUTING WEIGHT TABLE # See ~/programs/c/JSLIBS/libdnaenc/tests/subsampling-weights.gawk OLD STUFF # subsampling-weights -v balanced=1 -v variance=1.500 -v radius=10 # # 5 50 264 718 998 718 264 50 5 # var = 1.5000 # # subsampling-weights -v balanced=1 -v variance=2.000 -v radius=10 # # 2 18 105 366 773 992 773 366 105 18 2 # var = 2.0000 # # subsampling-weights -v balanced=1 -v variance=2.250 -v radius=15 # # 4 29 135 410 798 996 798 410 135 29 4 # var = 2.2503 # # subsampling-weights -v balanced=1 -v variance=3.000 -v radius=15 # # 2 16 70 223 512 842 994 842 512 223 70 16 2 # var = 3.0014 # # subsampling-weights -v balanced=1 -v variance=4.000 -v radius=15 # # 2 11 44 136 324 603 876 992 876 603 324 136 44 11 2 # var = 4.0024 # # ---------------------------------------------------------------------- # Binomial weights # INIT_WEIGHTS := 1 2 1 # var = 0.5000 # INCR_WEIGHTS := 1 2 1 # var = 0.5000 # INIT_WEIGHTS := 1 4 6 4 1 # var = 1.0000 # INCR_WEIGHTS := 1 2 1 # var = 0.5000 # INIT_WEIGHTS := 1 6 15 20 15 6 1 # var = 1.5000 # INCR_WEIGHTS := 1 2 1 # var = 0.5000 # INIT_WEIGHTS := 1 9 36 84 126 126 84 36 9 1 # var = 2.2500 # INCR_WEIGHTS := 1 3 3 1 # var = 0.7500 # INIT_WEIGHTS := 1 12 66 220 495 792 924 792 495 220 66 12 1 # var = 3.0000 # INCR_WEIGHTS := 1 4 6 4 1 # var = 1.0000 # INCR_WEIGHTS := 1 2 1 # var = 0.5000 # INCR_WEIGHTS := 1 3 3 1 # var = 0.7500 # INCR_WEIGHTS := 1 4 6 4 1 # var = 1.0000 # INCR_WEIGHTS := 1 5 10 10 5 1 # var = 1.2500 # INCR_WEIGHTS := 1 6 15 20 15 6 1 # var = 1.5000 # INCR_WEIGHTS := 1 7 21 35 35 21 7 1 # var = 1.7500 # INCR_WEIGHTS := 1 8 28 56 70 56 28 8 1 # var = 2.0000 # INCR_WEIGHTS := 1 9 36 84 126 126 84 36 9 1 # var = 2.2500 # INCR_WEIGHTS := 1 10 45 120 210 252 210 120 45 10 1 # var = 2.5000 # INCR_WEIGHTS := 1 11 55 165 330 462 462 330 165 55 11 1 # var = 2.7500 # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # Gaussian-like weights # INIT_WEIGHTS := 5 50 263 715 997 715 263 50 5 # var = 1.4998 unb = -0.0010 # INCR_WEIGHTS := 18 372 996 372 18 # var = 0.5000 unb = -0.1622 # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # Weights used sometime in 180_discrim # INIT_WEIGHTS := 1 8 20 24 20 8 1 # var = ????? # INCR_WEIGHTS := 1 4 6 4 1 # var = 1.0000 # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # Gaussian-based partition-of-unity weights # INIT_WEIGHTS := 5 50 263 716 996 716 263 50 5 # var = 1.5000 unb = +0.0000 # INCR_WEIGHTS := 1 2 1 # var = 0.5000 unb = +0.0000 # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # Gaussian-based weights by {subsampling-weights} # INIT_WEIGHTS := 2 11 44 136 324 603 876 992 876 603 324 136 44 11 2 # var = 4.0024 # INCR_WEIGHTS := 2 16 70 223 512 842 994 842 512 223 70 16 2 # var = 3.0014 # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # Gaussian-based weights by {subsampling-weights} # INIT_WEIGHTS := 1 5 17 50 124 263 471 714 917 996 917 714 471 263 124 50 17 5 1 # var = 5.9980 # INCR_WEIGHTS := 1 4 18 62 169 367 638 890 994 890 638 367 169 62 18 4 1 # var = 4.5000 # ---------------------------------------------------------------------- # Uniform weights # INIT_WEIGHTS := 1 1 1 1 1 # var = 2.0000 unb = -0.2000 # INCR_WEIGHTS := 1 1 1 # var = 0.6667 unb = -0.3333 # INIT_WEIGHTS := 1 1 1 # var = 0.6667 unb = +0.0000 # INCR_WEIGHTS := 1 1 # var = 0.2500 unb = +0.0000 # INIT_WEIGHTS := 1 1 # var = 0.2500 unb = +0.0000 # INCR_WEIGHTS := 1 1 # var = 0.2500 unb = +0.0000 # ----------------------------------------------------------------------