begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 3 | Segment [0] from curve 2 | 600 samples [3348..3947] | 0.108 of the curve [0.604__0.712] | Segment [1] from curve 6 (reversed) | 600 samples [3213..3812] | 0.114 of the curve [0.609__0.722] | Candidate after realignment and trimming: | Candidate index = 3 | Segment [0] from curve 2 | 513 samples [3391..3903] | 0.093 of the curve [0.612__0.704] | Segment [1] from curve 6 (reversed) | 513 samples [3257..3769] | 0.097 of the curve [0.617__0.714] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 1 0 8 2 0 12 3 0 15 4 0 19 5 0 23 6 0 27 7 0 31 8 0 35 9 0 39 10 0 43 11 0 47 11 0 50 12 0 54 13 0 58 14 0 62 15 0 66 15 0 70 16 0 74 16 0 78 16 0 82 16 0 86 16 0 90 17 0 94 17 0 98 17 0 102 18 0 106 19 0 110 20 0 114 21 0 118 22 0 121 23 0 125 24 0 129 25 0 133 26 0 137 27 0 141 27 0 145 28 0 149 28 0 153 29 0 157 29 0 161 30 0 165 31 0 168 32 0 172 33 0 176 35 0 180 36 0 184 37 0 187 39 0 191 40 0 195 41 0 199 42 0 202 44 0 206 45 0 210 46 0 214 48 0 218 49 0 221 51 0 225 52 0 229 54 0 232 56 0 236 58 0 239 60 0 242 62 0 245 65 0 249 67 0 252 70 0 255 72 0 258 74 0 261 77 0 264 79 0 268 82 0 271 84 0 274 86 0 277 89 0 281 91 0 284 93 0 288 94 0 292 96 0 296 97 0 299 98 0 303 99 0 307 100 0 311 101 0 315 101 0 319 101 0 323 101 0 327 102 0 331 102 0 335 102 0 339 102 0 343 102 0 347 102 0 351 102 0 355 102 0 359 102 0 363 102 0 367 102 0 371 101 0 375 101 0 379 101 0 383 100 0 387 100 0 391 100 0 395 99 0 399 99 0 403 99 0 407 99 0 411 99 0 415 100 0 419 100 0 423 101 0 427 102 0 430 103 0 434 104 0 438 106 0 442 107 0 446 108 0 449 110 0 453 111 0 457 112 0 461 113 0 465 114 0 469 115 0 473 116 0 476 117 0 480 117 0 484 118 0 488 118 0 492 118 0 496 118 0 500 118 0 504 118 0 508 118 0 512 118 0 516 118 0 520 118 0 524 118 0 528 118 0 532 118 0 536 118 0 540 118 0 544 117 0 548 117 0 552 117 0 556 117 0 560 117 0 564 117 0 568 117 0 572 117 0 576 117 0 580 117 0 584 117 0 588 116 0 592 116 0 596 116 0 600 116 0 604 115 0 608 114 0 612 114 0 616 113 0 620 112 0 624 111 0 628 110 0 632 109 0 636 109 0 640 108 0 644 108 0 647 107 0 651 107 0 655 107 0 659 106 0 663 106 0 667 106 0 671 106 0 675 105 0 679 105 0 683 104 0 687 104 0 691 103 0 695 103 0 699 102 0 703 101 0 707 101 0 711 100 0 715 100 0 719 100 0 723 100 0 727 100 0 731 100 0 735 100 0 739 101 0 743 102 0 747 103 0 751 104 0 754 105 0 758 106 0 762 107 0 766 109 0 770 110 0 774 111 0 777 112 0 781 113 0 785 113 0 789 114 0 793 114 0 797 114 0 801 114 0 805 114 0 809 113 0 813 113 0 817 113 0 821 112 0 825 112 0 829 111 0 833 111 0 837 110 0 841 109 0 845 108 0 849 107 0 852 106 0 856 104 0 860 103 0 864 101 0 867 100 0 871 98 0 875 97 0 879 96 0 882 94 0 886 93 0 890 92 0 894 90 0 897 89 0 901 88 0 905 87 0 909 86 0 913 85 0 917 85 0 921 84 0 925 84 0 929 83 0 933 83 0 937 82 0 941 82 0 945 82 0 949 82 0 953 82 0 957 82 0 961 82 0 965 83 0 969 84 0 973 84 0 976 85 0 980 87 0 984 88 0 988 89 0 992 90 0 996 90 0 1000 91 0 1004 92 0 1008 93 0 1012 93 0 1016 94 0 1019 95 0 1023 96 0 1027 97 0 1031 98 0 1035 99 0 1039 100 0 1042 101 0 1046 102 0 1050 102 0 1054 102 0 1058 101 0 1062 101 0 1066 100 0 1070 99 0 1074 98 0 1078 98 0 1082 97 0 1086 97 0 1090 97 0 1094 97 0 1098 97 0 1102 97 0 1106 97 0 1110 98 0 1114 98 0 1118 99 0 1122 99 0 1126 100 0 1130 101 0 1134 102 0 1138 103 0 1141 104 0 1145 105 0 1149 106 0 1153 107 0 1157 108 0 1161 109 0 1164 110 0 1168 111 0 1172 112 0 1176 113 0 1180 114 0 1184 114 0 1188 114 0 1192 114 0 1196 114 0 1200 114 0 1204 114 0 1208 114 0 1212 113 0 1216 113 0 1220 113 0 1224 113 0 1228 113 0 1232 113 0 1236 114 0 1240 114 0 1244 114 0 1248 115 0 1252 115 0 1256 115 0 1260 116 0 1264 116 0 1268 116 0 1272 116 0 1276 116 0 1280 116 0 1284 115 0 1288 114 0 1292 114 0 1296 113 0 1299 112 0 1303 111 0 1307 109 0 1311 108 0 1315 107 0 1318 105 0 1322 104 0 1326 102 0 1329 101 0 1333 99 0 1337 98 0 1341 96 0 1344 95 0 1348 94 0 1352 93 0 1356 92 0 1360 91 0 1364 90 0 1368 89 0 1372 88 0 1376 88 0 1379 87 0 1383 87 0 1387 87 0 1391 87 0 1395 88 0 1399 89 0 1403 90 0 1407 91 0 1411 93 0 1414 95 0 1418 97 0 1421 99 0 1424 101 0 1428 103 0 1432 104 0 1435 106 0 1439 107 0 1443 108 0 1447 109 0 1451 109 0 1455 109 0 1459 108 0 1463 108 0 1467 107 0 1471 106 0 1474 104 0 1478 103 0 1482 102 0 1486 101 0 1490 99 0 1493 98 0 1497 97 0 1501 95 0 1505 94 0 1508 93 0 1512 91 0 1516 90 0 1520 89 0 1524 88 0 1528 87 0 1531 86 0 1535 85 0 1539 84 0 1543 83 0 1547 81 0 1551 80 0 1554 79 0 1558 78 0 1562 77 0 1566 76 0 1570 75 0 1574 75 0 1578 75 0 1582 74 0 1586 74 0 1590 74 0 1594 74 0 1598 73 0 1602 72 0 1606 71 0 1610 70 0 1613 69 0 1617 67 0 1621 66 0 1624 64 0 1628 63 0 1632 62 0 1636 60 0 1640 59 0 1643 58 0 1647 56 0 1651 54 0 1654 53 0 1658 51 0 1661 48 0 1664 46 0 1667 44 0 1670 41 0 1673 38 0 1676 35 0 1678 32 0 1681 29 0 1684 26 0 1686 23 0 1689 20 0 1692 17 0 1694 14 0 1698 12 0 1701 9 0 1704 7 0 1708 5 0 1711 3 0 1715 2 0 1719 0 0 1722 -1 0 1726 -2 0 1730 -3 0 1734 -5 0 1738 -6 0 1741 -7 0 1745 -9 0 1749 -10 0 1752 -12 0 1756 -13 0 1760 -15 0 1764 -16 0 1767 -18 0 1771 -19 0 1775 -21 0 1779 -22 0 1782 -23 0 1786 -24 0 1790 -25 0 1794 -26 0 1798 -26 0 1802 -26 0 1806 -26 0 1810 -26 0 1814 -26 0 1818 -25 0 1822 -25 0 1826 -24 0 1830 -23 0 1834 -22 0 1837 -21 0 1841 -19 0 1845 -18 0 1849 -16 0 1852 -15 0 1856 -13 0 1860 -11 0 1863 -10 0 1867 -9 0 1871 -7 0 1875 -6 0 1879 -5 0 1883 -5 0 1886 -4 0 1890 -4 0 1894 -4 0 1898 -3 0 1902 -3 0 1906 -3 0 1910 -2 0 1914 -2 0 1918 -1 0 1922 -1 0 1926 0 0 1930 1 0 1934 1 0 1938 1 0 1942 1 0 1946 1 0 1950 1 0 1954 0 0 1958 0 0 1962 0 0 1966 0 0 end frb_curve_t