begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 10 | Segment [0] from curve 11 | 600 samples [2479..3078] | 0.120 of the curve [0.495__0.615] | Segment [1] from curve 19 (reversed) | 600 samples [3389..3988] | 0.115 of the curve [0.651__0.766] | Candidate after realignment and trimming: | Candidate index = 10 | Segment [0] from curve 11 | 513 samples [2522..3034] | 0.102 of the curve [0.504__0.606] | Segment [1] from curve 19 (reversed) | 513 samples [3433..3945] | 0.099 of the curve [0.659__0.758] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 2 0 7 3 0 11 4 0 15 6 0 19 7 0 23 8 0 26 9 0 30 10 0 34 12 0 38 13 0 42 14 0 46 15 0 50 16 0 53 17 0 57 18 0 61 18 0 65 19 0 69 20 0 73 21 0 77 23 0 80 24 0 84 25 0 88 26 0 92 27 0 96 28 0 100 29 0 104 30 0 107 32 0 111 33 0 115 34 0 118 36 0 122 38 0 126 40 0 129 42 0 132 44 0 136 46 0 139 48 0 143 49 0 147 51 0 151 52 0 155 53 0 158 53 0 162 54 0 166 54 0 170 54 0 174 54 0 178 53 0 182 53 0 186 53 0 190 53 0 194 52 0 198 53 0 202 53 0 206 53 0 210 53 0 214 53 0 218 53 0 222 52 0 226 52 0 230 52 0 234 51 0 238 50 0 242 50 0 246 49 0 250 48 0 254 48 0 258 48 0 262 47 0 266 48 0 270 48 0 274 49 0 278 50 0 281 51 0 285 53 0 289 55 0 292 57 0 296 58 0 299 60 0 303 62 0 307 64 0 310 66 0 314 67 0 317 69 0 321 71 0 324 73 0 328 75 0 331 77 0 335 79 0 338 81 0 342 83 0 345 85 0 349 87 0 352 89 0 356 91 0 359 93 0 363 94 0 366 96 0 370 97 0 374 98 0 378 99 0 382 100 0 386 100 0 390 101 0 394 101 0 398 101 0 402 100 0 406 100 0 410 100 0 414 99 0 418 99 0 422 99 0 426 98 0 430 98 0 434 98 0 438 98 0 442 98 0 446 98 0 450 99 0 454 99 0 458 99 0 462 99 0 466 99 0 470 99 0 474 99 0 478 98 0 482 97 0 485 96 0 489 95 0 493 93 0 496 91 0 500 89 0 503 88 0 507 86 0 511 84 0 514 82 0 518 81 0 522 79 0 525 78 0 529 77 0 533 75 0 537 74 0 541 73 0 544 72 0 548 71 0 552 70 0 556 69 0 560 67 0 564 66 0 567 65 0 571 63 0 574 61 0 578 59 0 581 57 0 585 55 0 588 53 0 591 50 0 595 48 0 598 46 0 602 44 0 605 42 0 609 41 0 612 39 0 616 37 0 620 36 0 624 35 0 627 34 0 631 32 0 635 31 0 639 30 0 643 29 0 647 29 0 651 28 0 655 27 0 659 27 0 663 27 0 667 27 0 671 26 0 675 26 0 679 26 0 683 26 0 687 26 0 691 26 0 695 26 0 699 25 0 703 25 0 707 25 0 711 25 0 715 24 0 719 25 0 723 25 0 727 25 0 730 26 0 734 27 0 738 27 0 742 28 0 746 29 0 750 30 0 754 31 0 758 32 0 762 33 0 766 34 0 769 35 0 773 36 0 777 37 0 781 38 0 785 39 0 789 40 0 793 40 0 797 41 0 801 42 0 805 42 0 809 43 0 813 43 0 817 43 0 821 44 0 825 44 0 829 44 0 833 45 0 837 45 0 840 45 0 844 46 0 848 47 0 852 47 0 856 48 0 860 48 0 864 48 0 868 48 0 872 48 0 876 48 0 880 48 0 884 47 0 888 46 0 892 45 0 896 44 0 899 42 0 903 41 0 907 39 0 911 38 0 914 36 0 918 35 0 922 33 0 925 32 0 929 30 0 933 29 0 937 28 0 940 26 0 944 25 0 948 24 0 952 23 0 956 21 0 959 20 0 963 19 0 967 17 0 971 16 0 974 14 0 978 13 0 982 12 0 986 11 0 990 11 0 994 10 0 998 10 0 1002 11 0 1006 12 0 1010 13 0 1013 14 0 1017 15 0 1021 17 0 1024 19 0 1028 21 0 1031 23 0 1035 25 0 1038 27 0 1041 29 0 1045 31 0 1048 33 0 1052 35 0 1056 36 0 1060 37 0 1064 38 0 1068 39 0 1072 39 0 1076 39 0 1080 39 0 1084 39 0 1088 39 0 1092 39 0 1096 40 0 1099 40 0 1103 41 0 1107 42 0 1111 44 0 1114 46 0 1118 48 0 1121 50 0 1124 53 0 1127 55 0 1130 58 0 1133 61 0 1136 63 0 1139 66 0 1142 69 0 1145 71 0 1148 74 0 1151 76 0 1155 78 0 1158 81 0 1161 83 0 1165 84 0 1169 86 0 1172 88 0 1176 89 0 1180 90 0 1184 91 0 1188 92 0 1191 94 0 1195 95 0 1199 96 0 1203 97 0 1207 99 0 1210 100 0 1214 102 0 1217 104 0 1221 106 0 1224 108 0 1228 110 0 1231 112 0 1235 113 0 1239 115 0 1242 117 0 1246 118 0 1250 119 0 1254 120 0 1258 120 0 1262 121 0 1266 121 0 1270 121 0 1274 121 0 1278 121 0 1282 121 0 1286 121 0 1290 120 0 1294 119 0 1298 118 0 1301 118 0 1305 116 0 1309 115 0 1313 114 0 1317 113 0 1320 111 0 1324 110 0 1328 108 0 1331 106 0 1335 104 0 1338 102 0 1342 101 0 1345 99 0 1349 97 0 1352 95 0 1356 93 0 1360 91 0 1363 90 0 1367 88 0 1370 86 0 1374 84 0 1377 82 0 1381 81 0 1385 79 0 1388 77 0 1392 75 0 1395 74 0 1399 72 0 1403 71 0 1407 71 0 1411 70 0 1415 70 0 1419 70 0 1423 70 0 1427 70 0 1431 70 0 1435 70 0 1439 69 0 1443 68 0 1447 68 0 1451 66 0 1454 65 0 1458 64 0 1462 63 0 1466 62 0 1470 61 0 1474 60 0 1478 59 0 1482 58 0 1485 58 0 1489 58 0 1493 57 0 1498 57 0 1502 57 0 1506 57 0 1510 57 0 1513 57 0 1517 57 0 1521 57 0 1525 57 0 1529 57 0 1533 57 0 1537 57 0 1541 56 0 1545 56 0 1549 56 0 1553 56 0 1557 56 0 1561 55 0 1565 55 0 1569 54 0 1573 53 0 1577 53 0 1581 52 0 1585 51 0 1589 50 0 1593 49 0 1597 48 0 1601 47 0 1605 47 0 1608 46 0 1612 45 0 1616 44 0 1620 43 0 1624 42 0 1628 41 0 1632 40 0 1636 39 0 1639 38 0 1643 37 0 1647 36 0 1651 35 0 1655 34 0 1659 34 0 1663 33 0 1667 33 0 1671 33 0 1675 32 0 1679 32 0 1683 32 0 1687 31 0 1691 31 0 1695 30 0 1699 29 0 1703 28 0 1706 27 0 1710 26 0 1714 25 0 1718 24 0 1722 23 0 1726 22 0 1730 22 0 1734 21 0 1738 21 0 1742 20 0 1746 20 0 1750 19 0 1754 19 0 1758 18 0 1762 17 0 1765 17 0 1769 16 0 1773 15 0 1777 14 0 1781 14 0 1785 13 0 1789 12 0 1793 12 0 1797 11 0 1801 11 0 1805 10 0 1809 10 0 1813 10 0 1817 10 0 1821 10 0 1825 10 0 1829 11 0 1833 11 0 1837 11 0 1841 11 0 1845 11 0 1849 11 0 1853 11 0 1857 10 0 1861 10 0 1865 9 0 1869 9 0 1873 8 0 1877 7 0 1881 7 0 1885 7 0 1888 6 0 1892 6 0 1896 6 0 1900 6 0 1904 6 0 1909 6 0 1913 6 0 1917 6 0 1921 5 0 1924 5 0 1928 5 0 1932 5 0 1936 4 0 1940 3 0 1944 3 0 1948 2 0 1952 1 0 1956 0 0 end frb_curve_t