begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 4 | Segment [0] from curve 3 | 966 samples [ 192..1157] | 0.137 of the curve [0.027__0.165] | Segment [1] from curve 102 (reversed) | 812 samples [4512..5323] | 0.104 of the curve [0.577__0.680] | Candidate after realignment and trimming: | Candidate index = 4 | Segment [0] from curve 3 | 513 samples [ 418.. 930] | 0.073 of the curve [0.059__0.132] | Segment [1] from curve 102 (reversed) | 513 samples [4662..5174] | 0.066 of the curve [0.596__0.661] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 1 0 8 3 0 11 4 0 15 6 0 19 7 0 22 9 0 26 11 0 29 12 0 33 14 0 37 16 0 40 18 0 44 19 0 48 21 0 51 23 0 55 24 0 59 25 0 63 26 0 67 27 0 71 28 0 74 28 0 78 29 0 82 29 0 86 30 0 90 30 0 94 31 0 98 32 0 102 32 0 106 33 0 110 34 0 114 34 0 118 35 0 122 35 0 126 36 0 130 36 0 134 36 0 138 37 0 142 37 0 146 37 0 150 37 0 154 38 0 158 38 0 162 38 0 166 37 0 170 37 0 174 36 0 177 35 0 181 33 0 185 32 0 189 30 0 192 29 0 196 28 0 200 26 0 204 25 0 208 24 0 212 23 0 216 23 0 220 22 0 224 22 0 227 21 0 231 21 0 235 21 0 239 21 0 243 22 0 247 23 0 251 24 0 255 25 0 259 26 0 262 28 0 266 30 0 269 32 0 273 34 0 276 36 0 280 38 0 283 39 0 287 41 0 291 43 0 295 44 0 298 45 0 302 47 0 306 48 0 310 49 0 314 50 0 317 51 0 321 52 0 325 53 0 329 54 0 333 55 0 337 56 0 341 57 0 345 57 0 349 58 0 353 58 0 357 59 0 361 59 0 365 60 0 369 60 0 373 61 0 376 61 0 380 62 0 384 62 0 388 62 0 392 62 0 396 62 0 400 61 0 404 61 0 408 61 0 412 60 0 416 60 0 420 60 0 424 60 0 428 59 0 432 59 0 436 59 0 440 59 0 444 59 0 448 60 0 452 60 0 456 60 0 460 61 0 464 61 0 468 62 0 472 62 0 476 62 0 480 62 0 484 62 0 488 62 0 492 62 0 496 62 0 500 61 0 504 61 0 508 60 0 512 59 0 516 59 0 520 58 0 524 57 0 528 56 0 532 55 0 536 54 0 539 53 0 543 53 0 547 52 0 551 51 0 555 51 0 559 50 0 563 50 0 567 50 0 571 51 0 575 51 0 579 52 0 583 53 0 587 53 0 591 54 0 595 55 0 599 56 0 603 56 0 607 57 0 611 58 0 614 58 0 618 58 0 622 58 0 626 59 0 630 59 0 634 59 0 638 59 0 642 59 0 646 59 0 650 59 0 654 59 0 658 58 0 662 58 0 666 58 0 670 58 0 674 58 0 678 58 0 682 58 0 686 58 0 690 58 0 694 59 0 698 60 0 702 60 0 706 61 0 710 62 0 714 63 0 718 64 0 722 65 0 726 66 0 730 66 0 734 67 0 737 68 0 741 68 0 745 69 0 749 69 0 753 69 0 757 70 0 761 70 0 765 70 0 769 70 0 773 70 0 777 70 0 781 70 0 785 70 0 789 70 0 793 69 0 797 69 0 801 69 0 805 68 0 809 68 0 813 67 0 817 66 0 821 66 0 825 65 0 829 64 0 833 64 0 837 63 0 841 63 0 845 62 0 849 62 0 853 61 0 857 61 0 861 61 0 865 61 0 869 61 0 873 61 0 877 62 0 881 62 0 885 63 0 889 64 0 892 65 0 896 65 0 900 66 0 904 67 0 908 67 0 912 68 0 916 68 0 920 69 0 924 69 0 928 69 0 932 69 0 936 69 0 940 68 0 944 68 0 948 68 0 952 67 0 956 67 0 960 66 0 964 66 0 968 66 0 972 65 0 976 65 0 980 64 0 984 64 0 988 64 0 992 63 0 996 63 0 1000 63 0 1004 63 0 1008 63 0 1012 63 0 1016 64 0 1020 64 0 1024 64 0 1028 65 0 1032 66 0 1036 66 0 1040 67 0 1043 68 0 1047 70 0 1051 71 0 1055 72 0 1058 74 0 1062 76 0 1066 77 0 1069 79 0 1073 80 0 1077 81 0 1081 82 0 1085 83 0 1089 84 0 1093 84 0 1097 84 0 1101 84 0 1105 83 0 1109 83 0 1112 82 0 1116 81 0 1120 80 0 1124 78 0 1128 77 0 1131 75 0 1135 73 0 1138 71 0 1141 69 0 1144 66 0 1147 63 0 1150 60 0 1152 57 0 1155 54 0 1157 51 0 1159 47 0 1162 44 0 1164 41 0 1166 38 0 1169 34 0 1171 31 0 1174 28 0 1176 25 0 1178 22 0 1181 18 0 1183 15 0 1186 12 0 1188 9 0 1191 6 0 1194 3 0 1196 0 0 1200 -2 0 1203 -4 0 1206 -7 0 1210 -8 0 1214 -10 0 1217 -11 0 1221 -13 0 1225 -14 0 1229 -15 0 1233 -16 0 1237 -16 0 1241 -17 0 1245 -17 0 1249 -17 0 1253 -17 0 1257 -17 0 1261 -17 0 1265 -16 0 1268 -15 0 1272 -14 0 1276 -13 0 1280 -11 0 1283 -9 0 1287 -7 0 1290 -6 0 1294 -4 0 1297 -2 0 1301 0 0 1305 1 0 1309 2 0 1313 2 0 1317 3 0 1321 3 0 1325 3 0 1329 3 0 1333 3 0 1337 3 0 1341 2 0 1345 2 0 1349 1 0 1352 0 0 1356 -1 0 1360 -3 0 1364 -4 0 1367 -6 0 1371 -8 0 1374 -10 0 1378 -12 0 1381 -13 0 1385 -15 0 1389 -17 0 1392 -18 0 1396 -19 0 1400 -20 0 1404 -21 0 1408 -21 0 1412 -21 0 1416 -21 0 1420 -20 0 1424 -20 0 1428 -19 0 1432 -18 0 1436 -17 0 1439 -16 0 1443 -15 0 1447 -13 0 1451 -12 0 1455 -11 0 1458 -10 0 1462 -8 0 1466 -7 0 1470 -6 0 1474 -4 0 1477 -3 0 1481 -1 0 1484 1 0 1488 2 0 1492 4 0 1495 6 0 1499 7 0 1503 9 0 1507 10 0 1510 11 0 1514 13 0 1518 14 0 1522 15 0 1525 16 0 1529 18 0 1533 19 0 1537 20 0 1541 22 0 1544 23 0 1548 24 0 1552 24 0 1556 25 0 1560 25 0 1564 25 0 1568 25 0 1572 25 0 1576 24 0 1580 24 0 1584 24 0 1588 24 0 1592 23 0 1596 24 0 1600 24 0 1604 24 0 1608 24 0 1612 24 0 1616 24 0 1620 24 0 1624 24 0 1628 24 0 1632 23 0 1636 23 0 1640 23 0 1644 22 0 1648 22 0 1652 22 0 1656 23 0 1660 23 0 1664 23 0 1668 24 0 1672 25 0 1676 26 0 1679 27 0 1683 29 0 1687 30 0 1691 31 0 1695 32 0 1699 33 0 1702 34 0 1706 35 0 1710 36 0 1714 37 0 1718 37 0 1722 38 0 1726 39 0 1730 39 0 1734 39 0 1738 40 0 1742 40 0 1746 40 0 1750 40 0 1754 40 0 1758 39 0 1762 39 0 1766 39 0 1770 39 0 1774 39 0 1778 38 0 1782 37 0 1786 36 0 1790 35 0 1793 34 0 1797 33 0 1801 31 0 1805 30 0 1808 28 0 1812 27 0 1816 26 0 1820 25 0 1824 25 0 1828 24 0 1832 24 0 1836 23 0 1840 23 0 1844 22 0 1848 22 0 1852 21 0 1856 20 0 1859 20 0 1863 19 0 1867 17 0 1871 16 0 1875 15 0 1879 14 0 1882 13 0 1886 12 0 1890 11 0 1894 10 0 1898 9 0 1902 8 0 1906 7 0 1910 7 0 1914 6 0 1918 6 0 1922 5 0 1926 5 0 1930 5 0 1934 4 0 1938 4 0 1942 4 0 1946 3 0 1950 3 0 1954 2 0 1957 1 0 1961 0 0 end frb_curve_t