begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 4 | Segment [0] from curve 3 | 966 samples [ 192..1157] | 0.137 of the curve [0.027__0.165] | Segment [1] from curve 102 (reversed) | 812 samples [4512..5323] | 0.104 of the curve [0.577__0.680] | Candidate after realignment and trimming: | Candidate index = 4 | Segment [0] from curve 3 | 513 samples [ 418.. 930] | 0.073 of the curve [0.059__0.132] | Segment [1] from curve 102 (reversed) | 513 samples [4662..5174] | 0.066 of the curve [0.596__0.661] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -2 0 7 -3 0 11 -5 0 14 -7 0 18 -9 0 21 -11 0 25 -13 0 28 -15 0 32 -17 0 35 -20 0 38 -22 0 41 -24 0 44 -27 0 47 -29 0 50 -32 0 53 -35 0 56 -38 0 59 -41 0 62 -43 0 64 -46 0 67 -49 0 70 -52 0 73 -55 0 76 -57 0 80 -59 0 83 -61 0 87 -62 0 91 -63 0 95 -64 0 99 -65 0 103 -65 0 107 -65 0 111 -65 0 115 -64 0 119 -64 0 123 -64 0 127 -63 0 131 -63 0 135 -63 0 139 -62 0 143 -62 0 147 -62 0 151 -62 0 155 -63 0 159 -63 0 163 -64 0 166 -65 0 170 -65 0 174 -66 0 178 -68 0 182 -69 0 186 -70 0 189 -71 0 193 -73 0 197 -74 0 201 -75 0 205 -76 0 209 -77 0 213 -77 0 217 -77 0 221 -77 0 224 -76 0 228 -75 0 232 -74 0 236 -72 0 240 -71 0 244 -70 0 247 -69 0 251 -68 0 255 -67 0 259 -66 0 263 -66 0 267 -65 0 271 -65 0 275 -65 0 279 -65 0 283 -64 0 287 -64 0 291 -63 0 295 -63 0 299 -62 0 303 -61 0 307 -60 0 310 -58 0 314 -57 0 318 -55 0 321 -53 0 325 -52 0 328 -50 0 332 -48 0 335 -46 0 339 -44 0 343 -42 0 346 -41 0 350 -39 0 353 -37 0 357 -35 0 360 -33 0 364 -31 0 367 -29 0 371 -28 0 375 -26 0 378 -24 0 382 -23 0 386 -21 0 389 -20 0 393 -19 0 397 -18 0 401 -17 0 405 -16 0 409 -15 0 413 -15 0 417 -14 0 421 -13 0 425 -12 0 428 -11 0 432 -10 0 436 -9 0 440 -8 0 444 -7 0 447 -5 0 451 -4 0 455 -2 0 459 -1 0 462 1 0 466 3 0 470 4 0 473 6 0 477 7 0 481 9 0 484 11 0 488 12 0 491 14 0 495 16 0 498 18 0 502 20 0 505 22 0 509 24 0 512 26 0 515 29 0 519 31 0 522 34 0 525 36 0 528 39 0 531 41 0 534 44 0 537 47 0 540 49 0 543 52 0 546 54 0 550 56 0 554 57 0 557 59 0 561 60 0 565 60 0 569 61 0 573 61 0 577 62 0 581 62 0 585 63 0 589 64 0 593 65 0 596 67 0 600 68 0 604 70 0 607 72 0 610 74 0 614 76 0 617 78 0 621 80 0 624 82 0 628 84 0 632 85 0 636 87 0 639 88 0 643 89 0 647 90 0 651 92 0 654 93 0 658 94 0 662 95 0 666 97 0 670 98 0 673 99 0 677 100 0 681 102 0 685 103 0 689 104 0 693 105 0 697 106 0 700 107 0 704 108 0 708 109 0 712 110 0 716 111 0 720 112 0 724 113 0 728 114 0 731 115 0 735 116 0 739 117 0 743 118 0 747 119 0 751 119 0 755 120 0 759 121 0 763 122 0 766 123 0 770 124 0 774 124 0 778 125 0 782 125 0 786 126 0 790 126 0 794 127 0 798 127 0 802 128 0 806 129 0 810 130 0 814 130 0 818 131 0 822 132 0 826 133 0 830 134 0 833 134 0 837 135 0 841 136 0 845 137 0 849 137 0 853 138 0 857 138 0 861 139 0 865 139 0 869 139 0 873 139 0 877 139 0 881 139 0 885 138 0 889 138 0 893 137 0 897 136 0 901 135 0 905 134 0 908 133 0 912 132 0 916 131 0 920 131 0 924 131 0 928 131 0 932 132 0 936 132 0 940 133 0 944 135 0 948 136 0 951 137 0 955 139 0 959 140 0 963 141 0 966 143 0 970 144 0 974 145 0 978 146 0 982 146 0 986 147 0 990 148 0 994 149 0 998 150 0 1002 150 0 1005 151 0 1009 152 0 1013 154 0 1017 155 0 1021 156 0 1024 158 0 1028 160 0 1032 161 0 1035 163 0 1039 164 0 1043 165 0 1047 167 0 1050 168 0 1054 169 0 1058 170 0 1062 172 0 1066 173 0 1069 174 0 1073 176 0 1077 178 0 1080 180 0 1084 182 0 1087 184 0 1091 186 0 1094 188 0 1098 189 0 1101 191 0 1105 192 0 1109 193 0 1113 194 0 1117 195 0 1121 195 0 1125 196 0 1129 196 0 1133 196 0 1137 196 0 1141 197 0 1145 197 0 1149 197 0 1153 197 0 1157 197 0 1161 197 0 1165 197 0 1169 197 0 1173 198 0 1177 198 0 1181 198 0 1185 199 0 1188 200 0 1192 201 0 1196 203 0 1200 204 0 1203 207 0 1206 209 0 1210 211 0 1213 213 0 1216 215 0 1220 217 0 1224 219 0 1227 220 0 1231 221 0 1235 221 0 1239 222 0 1243 222 0 1247 222 0 1251 222 0 1255 221 0 1259 221 0 1263 220 0 1267 219 0 1271 217 0 1274 215 0 1278 213 0 1281 211 0 1284 208 0 1287 205 0 1289 202 0 1292 199 0 1294 196 0 1297 193 0 1299 190 0 1302 187 0 1305 185 0 1308 182 0 1312 180 0 1315 178 0 1318 176 0 1322 174 0 1326 172 0 1329 171 0 1333 169 0 1337 167 0 1340 165 0 1344 164 0 1347 161 0 1351 159 0 1354 157 0 1357 155 0 1360 153 0 1364 150 0 1367 148 0 1370 146 0 1374 144 0 1377 141 0 1380 139 0 1384 137 0 1387 135 0 1391 133 0 1394 131 0 1398 129 0 1401 127 0 1405 125 0 1408 123 0 1412 121 0 1415 120 0 1419 118 0 1422 116 0 1426 114 0 1429 112 0 1433 110 0 1436 108 0 1440 107 0 1444 105 0 1447 104 0 1451 102 0 1455 101 0 1459 100 0 1462 98 0 1466 96 0 1470 95 0 1473 92 0 1476 90 0 1479 87 0 1482 84 0 1484 81 0 1487 78 0 1489 75 0 1491 71 0 1493 68 0 1496 65 0 1498 62 0 1501 59 0 1504 56 0 1507 54 0 1511 52 0 1515 51 0 1519 50 0 1523 49 0 1527 49 0 1531 49 0 1535 48 0 1539 48 0 1542 47 0 1546 47 0 1550 46 0 1554 45 0 1558 43 0 1562 42 0 1566 41 0 1569 39 0 1573 38 0 1577 36 0 1580 35 0 1584 34 0 1588 32 0 1592 31 0 1596 30 0 1599 29 0 1603 27 0 1607 26 0 1611 25 0 1615 24 0 1618 22 0 1622 21 0 1626 20 0 1630 19 0 1634 18 0 1638 17 0 1642 17 0 1646 16 0 1650 15 0 1654 15 0 1657 14 0 1661 13 0 1665 13 0 1669 12 0 1673 11 0 1677 11 0 1681 10 0 1685 10 0 1689 10 0 1693 10 0 1697 10 0 1701 10 0 1705 10 0 1709 10 0 1713 10 0 1717 9 0 1721 9 0 1725 9 0 1729 9 0 1733 9 0 1737 8 0 1741 8 0 1745 8 0 1749 8 0 1753 7 0 1757 7 0 1761 6 0 1765 5 0 1769 4 0 1773 3 0 1776 1 0 1780 0 0 1783 -2 0 1787 -4 0 1790 -6 0 1794 -8 0 1797 -10 0 1801 -11 0 1805 -13 0 1809 -13 0 1813 -14 0 1817 -14 0 1821 -13 0 1825 -12 0 1829 -11 0 1832 -10 0 1836 -8 0 1839 -7 0 1843 -5 0 1847 -3 0 1850 -2 0 1854 0 0 1858 1 0 1862 1 0 1866 2 0 1870 2 0 1874 2 0 1878 2 0 1882 1 0 1886 1 0 1890 0 0 1894 0 0 end frb_curve_t