begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 8 | Segment [0] from curve 8 | 600 samples [5423..6022] | 0.089 of the curve [0.800__0.889] | Segment [1] from curve 16 (reversed) | 600 samples [5156..5755] | 0.083 of the curve [0.715__0.799] | Candidate after realignment and trimming: | Candidate index = 8 | Segment [0] from curve 8 | 513 samples [5466..5978] | 0.076 of the curve [0.807__0.882] | Segment [1] from curve 16 (reversed) | 513 samples [5200..5712] | 0.071 of the curve [0.722__0.793] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -1 0 8 -2 0 12 -3 0 16 -3 0 20 -4 0 24 -4 0 28 -4 0 32 -5 0 36 -5 0 40 -5 0 44 -5 0 48 -6 0 52 -6 0 56 -6 0 60 -6 0 64 -6 0 68 -6 0 72 -6 0 76 -6 0 80 -6 0 84 -6 0 88 -6 0 92 -6 0 96 -6 0 100 -6 0 104 -6 0 108 -6 0 112 -6 0 116 -5 0 120 -5 0 124 -5 0 128 -5 0 132 -4 0 136 -4 0 139 -4 0 143 -3 0 147 -3 0 151 -3 0 155 -3 0 159 -3 0 163 -2 0 167 -2 0 171 -1 0 175 -1 0 179 0 0 183 1 0 187 2 0 191 3 0 195 4 0 199 5 0 203 6 0 206 7 0 210 8 0 214 9 0 218 10 0 222 12 0 226 13 0 229 14 0 233 15 0 237 16 0 241 17 0 245 18 0 249 18 0 253 18 0 257 18 0 261 18 0 265 18 0 269 17 0 273 17 0 277 17 0 281 16 0 285 16 0 289 16 0 293 16 0 297 16 0 301 17 0 305 17 0 309 18 0 313 18 0 317 19 0 321 19 0 325 19 0 329 19 0 333 18 0 337 18 0 340 17 0 344 16 0 348 15 0 352 14 0 356 13 0 360 12 0 364 11 0 368 10 0 371 9 0 375 8 0 379 8 0 383 7 0 387 6 0 391 6 0 395 5 0 399 5 0 403 4 0 407 3 0 411 3 0 415 2 0 419 2 0 423 1 0 427 1 0 431 0 0 435 0 0 439 -1 0 443 -1 0 447 -2 0 451 -2 0 455 -3 0 458 -4 0 462 -4 0 466 -5 0 470 -6 0 474 -7 0 478 -9 0 482 -10 0 486 -11 0 489 -12 0 493 -13 0 497 -14 0 501 -15 0 505 -16 0 509 -17 0 513 -17 0 517 -18 0 521 -19 0 525 -19 0 528 -20 0 532 -21 0 536 -22 0 540 -23 0 544 -24 0 548 -25 0 552 -27 0 555 -28 0 559 -29 0 563 -30 0 567 -31 0 571 -32 0 575 -32 0 579 -32 0 583 -32 0 587 -32 0 591 -32 0 595 -31 0 599 -30 0 603 -29 0 606 -28 0 610 -26 0 614 -24 0 617 -23 0 621 -21 0 624 -18 0 627 -16 0 631 -14 0 634 -11 0 637 -9 0 640 -6 0 643 -3 0 646 -1 0 648 2 0 651 5 0 654 8 0 658 10 0 661 13 0 664 15 0 667 17 0 671 19 0 674 21 0 678 23 0 682 24 0 685 26 0 689 27 0 693 28 0 697 29 0 701 30 0 705 31 0 708 32 0 712 33 0 716 33 0 720 33 0 724 34 0 728 34 0 732 34 0 736 34 0 740 34 0 744 34 0 748 34 0 752 34 0 756 34 0 760 34 0 764 34 0 768 34 0 772 33 0 776 33 0 780 32 0 784 32 0 788 31 0 792 31 0 796 31 0 800 30 0 804 30 0 808 30 0 812 30 0 816 30 0 820 30 0 824 30 0 828 31 0 832 31 0 836 31 0 840 32 0 844 32 0 848 33 0 852 34 0 856 34 0 860 35 0 864 36 0 868 37 0 872 38 0 875 38 0 879 39 0 883 39 0 887 39 0 891 39 0 895 39 0 899 39 0 903 39 0 907 39 0 911 39 0 915 39 0 919 39 0 923 39 0 927 39 0 931 39 0 935 40 0 939 40 0 943 41 0 947 42 0 951 43 0 955 44 0 959 45 0 962 47 0 966 48 0 970 50 0 974 51 0 977 52 0 981 54 0 985 55 0 989 55 0 993 56 0 997 56 0 1001 56 0 1005 55 0 1009 54 0 1013 53 0 1016 52 0 1020 51 0 1024 49 0 1027 47 0 1031 46 0 1035 44 0 1038 42 0 1042 40 0 1045 39 0 1049 37 0 1053 36 0 1057 34 0 1060 33 0 1064 32 0 1068 31 0 1072 30 0 1076 29 0 1080 28 0 1084 28 0 1088 27 0 1092 27 0 1096 27 0 1100 27 0 1104 27 0 1108 27 0 1112 26 0 1116 26 0 1120 26 0 1124 26 0 1128 27 0 1132 27 0 1136 27 0 1140 27 0 1144 27 0 1148 27 0 1152 27 0 1156 27 0 1160 27 0 1164 27 0 1168 27 0 1172 26 0 1176 26 0 1180 26 0 1184 25 0 1188 25 0 1192 24 0 1195 24 0 1199 23 0 1203 23 0 1207 22 0 1211 22 0 1215 22 0 1219 22 0 1223 21 0 1227 21 0 1231 21 0 1235 21 0 1239 21 0 1243 21 0 1247 21 0 1251 21 0 1255 21 0 1259 21 0 1263 21 0 1267 21 0 1271 21 0 1275 22 0 1279 22 0 1283 23 0 1287 23 0 1291 24 0 1295 25 0 1299 26 0 1303 27 0 1307 27 0 1311 28 0 1315 29 0 1319 29 0 1323 30 0 1327 30 0 1331 30 0 1335 30 0 1339 30 0 1343 30 0 1347 30 0 1351 30 0 1355 31 0 1359 31 0 1363 31 0 1367 31 0 1371 32 0 1375 32 0 1379 33 0 1383 33 0 1386 34 0 1390 34 0 1394 35 0 1398 36 0 1402 36 0 1406 37 0 1410 38 0 1414 38 0 1418 39 0 1422 40 0 1426 41 0 1430 42 0 1434 43 0 1437 44 0 1441 45 0 1445 46 0 1449 47 0 1453 48 0 1457 49 0 1461 49 0 1465 49 0 1469 50 0 1473 50 0 1477 50 0 1481 49 0 1485 49 0 1489 49 0 1493 48 0 1497 48 0 1501 48 0 1505 47 0 1509 46 0 1513 46 0 1516 45 0 1520 44 0 1524 43 0 1528 42 0 1532 41 0 1536 40 0 1540 40 0 1544 39 0 1548 39 0 1552 39 0 1556 39 0 1560 39 0 1564 39 0 1568 39 0 1572 39 0 1576 39 0 1580 39 0 1584 39 0 1588 39 0 1592 39 0 1596 39 0 1600 38 0 1604 37 0 1608 37 0 1612 36 0 1615 35 0 1619 34 0 1623 33 0 1627 32 0 1631 32 0 1635 31 0 1639 31 0 1643 31 0 1647 32 0 1651 32 0 1655 33 0 1659 34 0 1663 35 0 1667 36 0 1670 37 0 1674 38 0 1678 39 0 1682 40 0 1686 40 0 1690 41 0 1694 41 0 1698 41 0 1702 41 0 1706 41 0 1710 41 0 1714 41 0 1718 41 0 1722 40 0 1726 40 0 1730 40 0 1734 40 0 1738 39 0 1742 39 0 1746 38 0 1750 38 0 1754 37 0 1758 36 0 1762 35 0 1765 34 0 1769 33 0 1773 32 0 1777 31 0 1781 30 0 1785 29 0 1789 28 0 1793 27 0 1797 27 0 1801 26 0 1804 25 0 1808 25 0 1812 25 0 1816 24 0 1820 24 0 1824 23 0 1828 22 0 1832 22 0 1836 21 0 1840 20 0 1844 19 0 1848 19 0 1852 18 0 1856 17 0 1860 17 0 1864 16 0 1868 16 0 1872 15 0 1876 15 0 1880 16 0 1884 16 0 1888 16 0 1892 17 0 1896 17 0 1900 18 0 1904 18 0 1908 18 0 1912 18 0 1916 18 0 1920 17 0 1924 17 0 1927 16 0 1931 15 0 1935 15 0 1939 14 0 1943 13 0 1947 13 0 1951 12 0 1955 11 0 1959 11 0 1963 10 0 1967 9 0 1971 8 0 1975 7 0 1979 6 0 1982 5 0 1986 4 0 1990 3 0 1994 2 0 1998 1 0 2002 0 0 end frb_curve_t