begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 10 | Segment [0] from curve 11 | 600 samples [2479..3078] | 0.120 of the curve [0.495__0.615] | Segment [1] from curve 19 (reversed) | 600 samples [3389..3988] | 0.115 of the curve [0.651__0.766] | Candidate after realignment and trimming: | Candidate index = 10 | Segment [0] from curve 11 | 513 samples [2522..3034] | 0.102 of the curve [0.504__0.606] | Segment [1] from curve 19 (reversed) | 513 samples [3433..3945] | 0.099 of the curve [0.659__0.758] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -1 0 8 -3 0 11 -4 0 15 -6 0 19 -7 0 22 -9 0 26 -10 0 30 -11 0 34 -12 0 38 -13 0 42 -13 0 46 -13 0 50 -13 0 54 -13 0 58 -12 0 62 -12 0 66 -11 0 69 -10 0 73 -9 0 77 -8 0 81 -6 0 85 -5 0 89 -4 0 93 -3 0 96 -2 0 100 -2 0 104 -1 0 108 -1 0 112 -1 0 116 -1 0 120 -1 0 124 -1 0 128 -2 0 132 -3 0 136 -4 0 140 -4 0 144 -5 0 148 -6 0 152 -7 0 156 -7 0 160 -8 0 164 -8 0 168 -8 0 172 -8 0 176 -8 0 180 -8 0 184 -8 0 188 -8 0 192 -8 0 196 -8 0 200 -8 0 204 -8 0 208 -8 0 212 -8 0 216 -8 0 220 -8 0 224 -8 0 228 -7 0 232 -7 0 236 -6 0 240 -5 0 243 -4 0 247 -3 0 251 -2 0 255 -1 0 259 1 0 263 2 0 266 2 0 270 3 0 274 4 0 278 4 0 282 5 0 286 5 0 290 5 0 294 5 0 298 4 0 302 4 0 306 4 0 310 3 0 314 2 0 318 1 0 322 0 0 326 -1 0 329 -2 0 333 -3 0 337 -5 0 341 -6 0 345 -7 0 349 -8 0 353 -9 0 357 -9 0 361 -10 0 365 -10 0 369 -10 0 373 -11 0 376 -11 0 380 -11 0 384 -12 0 388 -12 0 392 -13 0 396 -13 0 400 -13 0 404 -14 0 408 -14 0 412 -14 0 416 -15 0 420 -15 0 424 -15 0 428 -15 0 432 -16 0 436 -16 0 440 -17 0 444 -18 0 448 -18 0 452 -19 0 456 -19 0 460 -19 0 464 -20 0 468 -19 0 472 -19 0 476 -19 0 480 -19 0 484 -18 0 488 -18 0 492 -17 0 496 -17 0 500 -16 0 504 -16 0 508 -15 0 512 -14 0 516 -13 0 519 -12 0 523 -11 0 527 -10 0 531 -9 0 535 -8 0 539 -7 0 543 -6 0 546 -5 0 550 -4 0 554 -3 0 558 -3 0 562 -2 0 566 -2 0 570 -1 0 574 -1 0 578 -1 0 582 0 0 586 0 0 590 0 0 594 1 0 598 1 0 602 1 0 606 2 0 610 2 0 614 2 0 618 2 0 622 1 0 626 1 0 630 0 0 634 -1 0 638 -2 0 642 -2 0 646 -3 0 650 -4 0 653 -5 0 657 -5 0 661 -6 0 665 -6 0 669 -7 0 673 -7 0 677 -7 0 681 -7 0 685 -7 0 689 -8 0 693 -8 0 697 -9 0 701 -9 0 705 -10 0 709 -10 0 713 -11 0 717 -12 0 721 -13 0 725 -13 0 729 -14 0 733 -14 0 737 -15 0 741 -15 0 745 -15 0 749 -15 0 753 -15 0 757 -15 0 761 -15 0 765 -15 0 769 -16 0 773 -16 0 777 -16 0 781 -16 0 785 -16 0 789 -17 0 793 -17 0 797 -18 0 800 -19 0 804 -20 0 808 -21 0 812 -22 0 816 -23 0 820 -25 0 823 -26 0 827 -28 0 831 -29 0 834 -31 0 838 -33 0 841 -35 0 845 -37 0 848 -38 0 852 -40 0 856 -42 0 860 -43 0 863 -44 0 867 -46 0 871 -47 0 875 -47 0 879 -48 0 883 -49 0 887 -50 0 891 -51 0 894 -51 0 898 -52 0 902 -53 0 906 -54 0 910 -55 0 914 -55 0 918 -56 0 922 -57 0 926 -57 0 930 -57 0 934 -58 0 938 -57 0 942 -57 0 946 -57 0 950 -56 0 954 -55 0 957 -53 0 961 -51 0 964 -49 0 968 -47 0 971 -45 0 974 -42 0 977 -39 0 980 -36 0 982 -34 0 985 -31 0 988 -28 0 991 -25 0 994 -23 0 998 -21 0 1001 -19 0 1005 -17 0 1009 -16 0 1013 -15 0 1016 -14 0 1020 -13 0 1024 -13 0 1028 -12 0 1032 -11 0 1036 -10 0 1040 -10 0 1044 -9 0 1048 -7 0 1052 -6 0 1055 -5 0 1059 -4 0 1063 -2 0 1067 -1 0 1070 1 0 1074 2 0 1078 3 0 1082 4 0 1086 5 0 1090 5 0 1094 5 0 1098 5 0 1102 5 0 1106 5 0 1110 5 0 1114 4 0 1118 3 0 1122 3 0 1126 2 0 1130 2 0 1133 1 0 1137 1 0 1141 0 0 1145 0 0 1149 0 0 1153 0 0 1157 0 0 1161 0 0 1165 0 0 1169 0 0 1173 -1 0 1177 -1 0 1181 -1 0 1185 -2 0 1189 -2 0 1193 -3 0 1197 -3 0 1201 -4 0 1205 -4 0 1209 -4 0 1213 -4 0 1217 -4 0 1221 -4 0 1225 -4 0 1229 -4 0 1233 -4 0 1237 -4 0 1241 -4 0 1245 -4 0 1249 -4 0 1253 -3 0 1257 -3 0 1261 -2 0 1265 -1 0 1269 1 0 1272 2 0 1276 3 0 1280 4 0 1284 5 0 1288 6 0 1292 7 0 1296 8 0 1300 8 0 1304 9 0 1308 9 0 1312 10 0 1316 10 0 1319 11 0 1323 11 0 1327 11 0 1331 12 0 1335 12 0 1339 12 0 1343 12 0 1347 12 0 1351 11 0 1355 11 0 1359 10 0 1363 10 0 1367 9 0 1371 8 0 1375 7 0 1379 6 0 1383 5 0 1386 3 0 1390 2 0 1394 1 0 1398 -1 0 1401 -2 0 1405 -4 0 1409 -5 0 1413 -7 0 1416 -8 0 1420 -9 0 1424 -10 0 1428 -10 0 1432 -11 0 1436 -11 0 1440 -11 0 1444 -10 0 1448 -10 0 1452 -9 0 1456 -9 0 1460 -9 0 1464 -8 0 1468 -8 0 1472 -7 0 1476 -7 0 1480 -7 0 1484 -6 0 1488 -6 0 1492 -5 0 1496 -5 0 1500 -5 0 1504 -5 0 1508 -5 0 1512 -5 0 1516 -6 0 1520 -6 0 1524 -7 0 1528 -8 0 1532 -8 0 1535 -9 0 1539 -10 0 1543 -11 0 1547 -11 0 1551 -12 0 1555 -13 0 1559 -13 0 1563 -14 0 1567 -14 0 1571 -15 0 1575 -16 0 1579 -17 0 1583 -18 0 1587 -18 0 1590 -19 0 1594 -20 0 1598 -21 0 1602 -22 0 1606 -23 0 1610 -23 0 1614 -24 0 1618 -24 0 1622 -24 0 1626 -24 0 1630 -24 0 1634 -24 0 1638 -24 0 1642 -23 0 1646 -22 0 1650 -22 0 1654 -21 0 1658 -20 0 1661 -19 0 1665 -18 0 1669 -17 0 1673 -16 0 1677 -15 0 1681 -14 0 1685 -14 0 1689 -13 0 1693 -13 0 1697 -13 0 1701 -13 0 1705 -13 0 1709 -13 0 1713 -13 0 1717 -13 0 1721 -13 0 1725 -12 0 1729 -12 0 1733 -11 0 1737 -10 0 1740 -9 0 1744 -7 0 1748 -6 0 1752 -4 0 1755 -3 0 1759 -1 0 1763 0 0 1766 2 0 1770 3 0 1774 5 0 1778 6 0 1781 7 0 1785 8 0 1789 8 0 1793 9 0 1797 9 0 1801 9 0 1805 9 0 1809 9 0 1813 9 0 1817 9 0 1821 9 0 1825 9 0 1829 9 0 1833 9 0 1837 10 0 1841 10 0 1845 10 0 1849 10 0 1853 10 0 1857 10 0 1861 11 0 1865 11 0 1869 10 0 1873 10 0 1877 10 0 1881 9 0 1885 9 0 1889 8 0 1893 7 0 1897 6 0 1901 5 0 1905 4 0 1909 4 0 1913 3 0 1917 2 0 1920 2 0 1924 1 0 1928 0 0 1932 0 0 1936 -1 0 1940 -1 0 1944 -2 0 1948 -2 0 1952 -2 0 1956 -3 0 1960 -3 0 1964 -3 0 1968 -3 0 1972 -3 0 1976 -3 0 1980 -2 0 1984 -2 0 1988 -2 0 1992 -1 0 1996 -1 0 2000 0 0 end frb_curve_t