begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 18 | Segment [0] from curve 24 | 600 samples [9279..9878] | 0.057 of the curve [0.877__0.934] | Segment [1] from curve 37 (reversed) | 600 samples [2048..2647] | 0.111 of the curve [0.378__0.489] | Candidate after realignment and trimming: | Candidate index = 18 | Segment [0] from curve 24 | 513 samples [9322..9834] | 0.049 of the curve [0.881__0.930] | Segment [1] from curve 37 (reversed) | 513 samples [2092..2604] | 0.095 of the curve [0.387__0.481] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 3 -2 0 7 -4 0 10 -6 0 14 -8 0 18 -10 0 21 -11 0 25 -13 0 29 -14 0 33 -15 0 37 -16 0 41 -16 0 45 -16 0 49 -16 0 53 -16 0 57 -16 0 60 -16 0 64 -15 0 68 -15 0 72 -14 0 76 -14 0 80 -14 0 84 -14 0 88 -15 0 92 -16 0 96 -16 0 100 -17 0 104 -18 0 108 -20 0 112 -21 0 116 -22 0 119 -23 0 123 -24 0 127 -25 0 131 -25 0 135 -26 0 139 -27 0 143 -27 0 147 -27 0 151 -28 0 155 -28 0 159 -29 0 163 -29 0 167 -30 0 171 -30 0 175 -31 0 179 -31 0 183 -31 0 187 -31 0 191 -31 0 195 -31 0 199 -30 0 203 -29 0 206 -28 0 210 -26 0 214 -24 0 217 -22 0 220 -20 0 224 -18 0 227 -15 0 230 -12 0 232 -10 0 235 -7 0 238 -4 0 241 -2 0 244 1 0 248 3 0 251 5 0 255 7 0 258 9 0 262 11 0 266 12 0 269 13 0 273 15 0 277 16 0 281 16 0 285 17 0 289 18 0 293 18 0 297 18 0 301 18 0 305 18 0 309 18 0 313 18 0 317 18 0 321 17 0 325 17 0 329 16 0 333 16 0 337 15 0 341 14 0 345 14 0 349 13 0 353 13 0 356 12 0 360 11 0 364 11 0 368 10 0 372 9 0 376 8 0 380 7 0 384 6 0 388 5 0 392 4 0 395 3 0 399 2 0 403 0 0 407 -1 0 410 -3 0 414 -4 0 418 -6 0 421 -8 0 425 -9 0 429 -11 0 432 -12 0 436 -14 0 440 -15 0 444 -16 0 448 -17 0 451 -18 0 455 -19 0 459 -20 0 463 -21 0 467 -22 0 471 -22 0 475 -23 0 479 -23 0 483 -24 0 487 -24 0 491 -24 0 495 -24 0 499 -24 0 503 -24 0 507 -24 0 511 -24 0 515 -25 0 519 -25 0 523 -25 0 527 -25 0 531 -25 0 535 -25 0 539 -24 0 543 -24 0 547 -23 0 551 -23 0 555 -22 0 559 -21 0 562 -20 0 566 -18 0 570 -17 0 574 -15 0 577 -14 0 581 -12 0 585 -11 0 588 -9 0 592 -8 0 596 -6 0 599 -5 0 603 -4 0 607 -2 0 611 -1 0 615 0 0 619 0 0 623 1 0 627 2 0 631 2 0 635 2 0 639 2 0 643 2 0 647 1 0 651 0 0 654 0 0 658 -1 0 662 -2 0 666 -3 0 670 -4 0 674 -4 0 678 -5 0 682 -5 0 686 -5 0 690 -5 0 694 -5 0 698 -4 0 702 -4 0 706 -3 0 710 -2 0 714 0 0 717 1 0 721 2 0 725 4 0 729 5 0 732 6 0 736 8 0 740 9 0 743 11 0 747 12 0 751 14 0 755 15 0 758 17 0 762 18 0 766 20 0 769 21 0 773 23 0 777 24 0 781 26 0 784 27 0 788 28 0 792 29 0 796 30 0 800 31 0 804 32 0 808 33 0 812 33 0 816 34 0 819 35 0 823 36 0 827 37 0 831 38 0 835 40 0 838 41 0 842 43 0 845 45 0 849 47 0 852 50 0 855 52 0 858 55 0 861 58 0 864 61 0 866 64 0 870 66 0 873 69 0 876 71 0 880 73 0 883 74 0 887 76 0 891 77 0 895 78 0 899 78 0 903 79 0 907 79 0 911 80 0 915 80 0 919 80 0 923 80 0 927 80 0 931 80 0 935 80 0 939 80 0 943 80 0 947 80 0 951 80 0 955 80 0 959 80 0 963 80 0 967 79 0 971 79 0 975 78 0 978 78 0 982 77 0 986 77 0 990 77 0 994 76 0 998 76 0 1002 76 0 1006 76 0 1010 76 0 1014 77 0 1018 77 0 1022 78 0 1026 79 0 1030 81 0 1034 82 0 1037 84 0 1041 86 0 1044 88 0 1048 90 0 1051 92 0 1054 94 0 1058 96 0 1061 98 0 1064 101 0 1068 103 0 1071 105 0 1074 107 0 1078 110 0 1081 112 0 1084 114 0 1088 116 0 1092 117 0 1095 119 0 1099 121 0 1103 122 0 1106 123 0 1110 125 0 1114 126 0 1118 126 0 1122 127 0 1126 128 0 1130 129 0 1134 130 0 1138 130 0 1142 131 0 1146 131 0 1149 132 0 1153 133 0 1157 134 0 1161 134 0 1165 135 0 1169 136 0 1173 137 0 1177 138 0 1181 140 0 1184 141 0 1188 142 0 1192 143 0 1196 145 0 1200 145 0 1204 146 0 1208 147 0 1212 147 0 1216 146 0 1219 145 0 1223 144 0 1227 142 0 1230 140 0 1234 138 0 1237 136 0 1240 134 0 1243 131 0 1247 129 0 1250 126 0 1253 124 0 1256 122 0 1259 119 0 1263 117 0 1266 114 0 1269 112 0 1272 110 0 1276 107 0 1279 105 0 1282 103 0 1286 101 0 1289 99 0 1293 97 0 1296 95 0 1300 94 0 1304 92 0 1307 90 0 1311 89 0 1314 87 0 1318 85 0 1322 84 0 1326 82 0 1329 81 0 1333 80 0 1337 79 0 1341 78 0 1345 77 0 1349 76 0 1353 76 0 1357 75 0 1361 75 0 1365 75 0 1369 75 0 1373 75 0 1377 76 0 1381 76 0 1384 77 0 1388 78 0 1392 79 0 1396 80 0 1400 81 0 1404 82 0 1408 84 0 1411 85 0 1415 86 0 1419 88 0 1423 89 0 1427 90 0 1430 91 0 1434 91 0 1438 92 0 1442 92 0 1446 92 0 1450 91 0 1454 90 0 1458 90 0 1462 89 0 1466 88 0 1470 87 0 1474 86 0 1478 85 0 1482 84 0 1485 83 0 1489 82 0 1493 81 0 1497 80 0 1501 79 0 1505 78 0 1509 76 0 1512 75 0 1516 73 0 1519 71 0 1523 69 0 1526 67 0 1529 65 0 1533 63 0 1536 60 0 1539 58 0 1543 56 0 1546 53 0 1549 51 0 1553 49 0 1556 47 0 1560 45 0 1563 43 0 1567 41 0 1570 40 0 1574 38 0 1578 36 0 1581 35 0 1585 33 0 1589 32 0 1593 31 0 1596 29 0 1600 28 0 1604 26 0 1608 25 0 1611 24 0 1615 23 0 1619 21 0 1623 20 0 1627 19 0 1630 18 0 1634 17 0 1638 15 0 1642 14 0 1646 13 0 1650 12 0 1653 11 0 1657 10 0 1661 9 0 1665 8 0 1669 7 0 1673 6 0 1677 4 0 1680 3 0 1684 2 0 1688 0 0 1692 -1 0 1695 -3 0 1699 -4 0 1703 -6 0 1706 -7 0 1710 -9 0 1714 -10 0 1717 -12 0 1721 -13 0 1725 -15 0 1728 -17 0 1732 -18 0 1735 -20 0 1739 -22 0 1742 -24 0 1746 -26 0 1749 -29 0 1753 -31 0 1756 -33 0 1759 -35 0 1763 -37 0 1766 -39 0 1770 -41 0 1773 -43 0 1777 -45 0 1780 -46 0 1784 -48 0 1788 -49 0 1792 -50 0 1796 -52 0 1799 -52 0 1803 -53 0 1807 -53 0 1811 -54 0 1815 -53 0 1819 -53 0 1823 -52 0 1827 -51 0 1831 -50 0 1835 -49 0 1838 -47 0 1842 -45 0 1845 -43 0 1849 -41 0 1852 -39 0 1855 -36 0 1858 -34 0 1861 -31 0 1865 -29 0 1868 -26 0 1871 -24 0 1874 -21 0 1877 -19 0 1880 -17 0 1884 -14 0 1887 -12 0 1891 -10 0 1894 -9 0 1898 -7 0 1901 -5 0 1905 -4 0 1909 -2 0 1913 -1 0 1917 0 0 end frb_curve_t