begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 23 | Segment [0] from curve 27 | 600 samples [1895..2494] | 0.104 of the curve [0.328__0.432] | Segment [1] from curve 40 (reversed) | 600 samples [2139..2738] | 0.125 of the curve [0.445__0.569] | Candidate after realignment and trimming: | Candidate index = 23 | Segment [0] from curve 27 | 513 samples [1938..2450] | 0.089 of the curve [0.335__0.424] | Segment [1] from curve 40 (reversed) | 513 samples [2183..2695] | 0.107 of the curve [0.454__0.560] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 0 0 12 -1 0 16 -1 0 20 -2 0 24 -2 0 28 -2 0 32 -2 0 36 -3 0 40 -3 0 44 -3 0 48 -3 0 52 -4 0 56 -4 0 60 -4 0 64 -4 0 68 -4 0 72 -4 0 76 -4 0 80 -5 0 84 -5 0 88 -5 0 92 -4 0 96 -4 0 100 -4 0 104 -3 0 108 -3 0 112 -2 0 116 -1 0 119 0 0 123 1 0 127 2 0 131 2 0 135 3 0 139 4 0 143 6 0 147 7 0 150 7 0 154 8 0 158 9 0 162 10 0 166 11 0 170 12 0 174 12 0 178 13 0 182 14 0 186 15 0 190 15 0 194 16 0 197 18 0 201 19 0 205 20 0 209 21 0 213 22 0 216 24 0 220 25 0 224 26 0 228 28 0 231 29 0 235 31 0 239 32 0 243 33 0 247 34 0 250 36 0 254 37 0 258 38 0 262 39 0 266 40 0 270 41 0 273 43 0 277 44 0 281 45 0 285 46 0 289 48 0 292 49 0 296 50 0 300 52 0 304 53 0 307 55 0 311 57 0 314 59 0 318 61 0 321 63 0 324 66 0 327 68 0 330 71 0 332 74 0 335 77 0 337 80 0 340 84 0 342 87 0 344 90 0 347 94 0 349 97 0 351 100 0 353 104 0 355 107 0 358 110 0 360 113 0 363 116 0 366 119 0 369 121 0 372 124 0 376 126 0 379 128 0 383 130 0 386 131 0 390 133 0 394 134 0 398 135 0 402 136 0 406 137 0 410 138 0 414 138 0 417 139 0 421 140 0 425 140 0 429 140 0 433 141 0 437 141 0 441 141 0 445 142 0 449 142 0 453 143 0 457 143 0 461 143 0 465 144 0 469 144 0 473 144 0 477 144 0 481 144 0 485 144 0 489 144 0 493 144 0 497 144 0 501 143 0 505 143 0 509 142 0 513 141 0 517 141 0 521 140 0 525 139 0 529 138 0 533 137 0 536 136 0 540 135 0 544 135 0 548 134 0 552 133 0 556 133 0 560 133 0 564 132 0 568 132 0 572 131 0 576 131 0 580 131 0 584 131 0 588 131 0 592 131 0 596 131 0 600 131 0 604 132 0 608 132 0 612 132 0 616 133 0 620 133 0 624 133 0 628 133 0 632 133 0 636 133 0 640 133 0 644 132 0 648 132 0 652 132 0 656 133 0 660 133 0 664 134 0 668 135 0 671 137 0 675 139 0 678 141 0 681 144 0 684 146 0 687 149 0 690 152 0 693 154 0 696 157 0 699 159 0 703 162 0 706 164 0 709 166 0 713 168 0 717 169 0 720 171 0 724 173 0 727 175 0 731 176 0 735 178 0 738 180 0 742 182 0 745 184 0 749 186 0 752 188 0 755 190 0 759 192 0 762 194 0 765 197 0 769 199 0 772 201 0 775 204 0 778 206 0 782 208 0 785 210 0 788 213 0 792 215 0 795 216 0 799 218 0 803 220 0 806 221 0 810 223 0 814 224 0 817 226 0 821 227 0 825 229 0 829 230 0 832 232 0 836 233 0 840 235 0 844 236 0 847 237 0 851 238 0 855 239 0 859 240 0 863 240 0 867 240 0 871 241 0 875 241 0 879 241 0 883 240 0 887 240 0 891 240 0 895 239 0 899 239 0 903 238 0 907 238 0 911 237 0 915 236 0 919 235 0 922 234 0 926 233 0 930 232 0 934 231 0 938 229 0 942 228 0 945 227 0 949 226 0 953 225 0 957 225 0 961 224 0 965 224 0 969 223 0 973 223 0 977 224 0 981 224 0 985 224 0 989 224 0 993 224 0 997 224 0 1001 223 0 1005 223 0 1009 222 0 1013 220 0 1016 219 0 1020 217 0 1023 215 0 1027 213 0 1031 212 0 1034 210 0 1038 209 0 1042 208 0 1046 208 0 1050 208 0 1054 208 0 1058 208 0 1062 208 0 1066 209 0 1070 209 0 1074 209 0 1078 209 0 1082 209 0 1086 208 0 1090 208 0 1094 207 0 1098 206 0 1102 205 0 1105 203 0 1109 202 0 1113 200 0 1116 199 0 1120 197 0 1123 195 0 1127 193 0 1130 191 0 1134 189 0 1137 187 0 1141 185 0 1144 183 0 1147 180 0 1151 178 0 1154 176 0 1158 174 0 1161 173 0 1165 171 0 1169 169 0 1172 168 0 1176 167 0 1180 166 0 1184 165 0 1188 164 0 1192 163 0 1196 163 0 1200 163 0 1204 163 0 1208 163 0 1212 164 0 1216 164 0 1220 165 0 1224 166 0 1227 167 0 1231 168 0 1235 170 0 1239 171 0 1243 172 0 1247 173 0 1251 174 0 1254 174 0 1258 175 0 1262 176 0 1266 176 0 1270 177 0 1274 177 0 1278 178 0 1282 179 0 1286 180 0 1290 181 0 1294 182 0 1298 183 0 1301 184 0 1305 185 0 1309 187 0 1313 188 0 1316 189 0 1320 191 0 1324 193 0 1327 194 0 1331 196 0 1335 198 0 1338 199 0 1342 201 0 1346 203 0 1349 204 0 1353 206 0 1356 208 0 1360 209 0 1364 210 0 1368 212 0 1372 213 0 1376 213 0 1380 214 0 1384 215 0 1387 215 0 1391 215 0 1395 215 0 1399 214 0 1403 213 0 1407 212 0 1411 211 0 1415 210 0 1419 209 0 1423 208 0 1426 207 0 1430 206 0 1434 206 0 1438 205 0 1442 205 0 1446 205 0 1450 205 0 1454 205 0 1458 205 0 1462 205 0 1466 205 0 1470 204 0 1474 204 0 1478 203 0 1482 202 0 1486 201 0 1490 200 0 1494 199 0 1498 197 0 1501 196 0 1505 195 0 1509 193 0 1512 192 0 1516 190 0 1520 188 0 1523 187 0 1527 185 0 1531 184 0 1534 182 0 1538 180 0 1542 179 0 1545 177 0 1549 176 0 1553 174 0 1557 173 0 1560 172 0 1564 170 0 1568 169 0 1572 168 0 1576 167 0 1580 166 0 1583 165 0 1587 164 0 1591 163 0 1595 161 0 1598 160 0 1602 158 0 1605 155 0 1608 153 0 1611 150 0 1614 147 0 1616 144 0 1619 140 0 1621 137 0 1624 134 0 1626 131 0 1629 129 0 1633 126 0 1636 124 0 1640 123 0 1644 121 0 1647 120 0 1651 120 0 1655 119 0 1659 118 0 1663 118 0 1667 117 0 1671 116 0 1675 116 0 1679 115 0 1683 113 0 1686 112 0 1690 110 0 1694 109 0 1697 107 0 1701 106 0 1705 104 0 1708 102 0 1712 101 0 1716 99 0 1719 98 0 1723 96 0 1727 94 0 1730 93 0 1734 91 0 1737 89 0 1741 87 0 1744 84 0 1747 82 0 1750 79 0 1753 77 0 1756 74 0 1759 72 0 1763 69 0 1766 67 0 1769 65 0 1772 62 0 1776 61 0 1780 59 0 1783 57 0 1787 56 0 1791 54 0 1794 53 0 1798 51 0 1802 49 0 1805 47 0 1808 45 0 1812 43 0 1815 41 0 1819 39 0 1822 37 0 1825 35 0 1829 33 0 1833 31 0 1836 30 0 1840 28 0 1844 27 0 1848 25 0 1851 24 0 1855 22 0 1859 21 0 1862 19 0 1866 17 0 1869 15 0 1873 13 0 1876 11 0 1879 9 0 1883 7 0 1886 5 0 1890 3 0 1894 1 0 1897 0 0 end frb_curve_t