begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 23 | Segment [0] from curve 27 | 600 samples [1895..2494] | 0.104 of the curve [0.328__0.432] | Segment [1] from curve 40 (reversed) | 600 samples [2139..2738] | 0.125 of the curve [0.445__0.569] | Candidate after realignment and trimming: | Candidate index = 23 | Segment [0] from curve 27 | 513 samples [1938..2450] | 0.089 of the curve [0.335__0.424] | Segment [1] from curve 40 (reversed) | 513 samples [2183..2695] | 0.107 of the curve [0.454__0.560] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 0 0 12 -1 0 16 -1 0 20 -1 0 24 -2 0 28 -2 0 32 -3 0 36 -3 0 40 -3 0 44 -4 0 48 -4 0 52 -4 0 56 -4 0 60 -3 0 64 -3 0 68 -2 0 72 -1 0 76 -1 0 80 0 0 83 1 0 87 2 0 91 3 0 95 4 0 99 5 0 103 6 0 107 7 0 110 8 0 114 10 0 118 11 0 122 12 0 126 13 0 129 14 0 133 16 0 137 17 0 141 18 0 145 19 0 149 20 0 152 21 0 156 23 0 160 24 0 164 25 0 168 25 0 172 26 0 176 27 0 180 27 0 184 27 0 188 27 0 192 27 0 196 27 0 200 27 0 204 27 0 208 26 0 212 26 0 216 26 0 220 25 0 224 25 0 228 24 0 232 24 0 236 23 0 239 22 0 243 21 0 247 20 0 251 19 0 255 17 0 259 16 0 262 15 0 266 13 0 270 12 0 274 11 0 278 10 0 282 10 0 286 9 0 289 8 0 293 8 0 297 7 0 301 6 0 305 6 0 309 5 0 313 4 0 317 3 0 321 2 0 325 0 0 328 -1 0 332 -3 0 335 -5 0 339 -6 0 343 -8 0 346 -10 0 350 -12 0 353 -14 0 357 -16 0 360 -18 0 364 -20 0 367 -22 0 371 -24 0 374 -26 0 378 -27 0 381 -29 0 385 -31 0 389 -32 0 393 -33 0 396 -35 0 400 -36 0 404 -37 0 408 -37 0 412 -38 0 416 -39 0 420 -39 0 424 -40 0 428 -40 0 432 -40 0 436 -40 0 440 -39 0 444 -39 0 448 -39 0 452 -38 0 456 -38 0 460 -37 0 464 -37 0 468 -37 0 472 -37 0 476 -37 0 480 -37 0 484 -37 0 488 -38 0 491 -39 0 495 -40 0 499 -42 0 503 -44 0 506 -45 0 510 -48 0 513 -50 0 516 -52 0 520 -54 0 523 -56 0 527 -58 0 530 -60 0 534 -62 0 537 -64 0 541 -66 0 544 -68 0 548 -70 0 551 -72 0 554 -74 0 558 -76 0 561 -78 0 565 -80 0 568 -82 0 571 -84 0 575 -86 0 578 -88 0 582 -90 0 585 -92 0 589 -94 0 593 -95 0 597 -96 0 601 -97 0 605 -97 0 609 -98 0 613 -98 0 617 -97 0 621 -97 0 625 -96 0 629 -96 0 632 -95 0 636 -94 0 640 -94 0 644 -93 0 648 -92 0 652 -91 0 656 -90 0 660 -89 0 664 -88 0 667 -86 0 671 -85 0 675 -84 0 679 -82 0 682 -81 0 686 -79 0 690 -77 0 693 -76 0 697 -74 0 701 -72 0 704 -71 0 708 -69 0 712 -68 0 715 -67 0 719 -66 0 723 -65 0 727 -64 0 731 -64 0 735 -63 0 739 -63 0 743 -64 0 747 -64 0 751 -65 0 755 -65 0 759 -66 0 763 -66 0 767 -67 0 771 -67 0 775 -67 0 779 -67 0 783 -66 0 787 -66 0 791 -65 0 795 -65 0 799 -64 0 803 -64 0 807 -64 0 811 -63 0 815 -63 0 819 -64 0 823 -64 0 827 -64 0 831 -65 0 835 -65 0 839 -66 0 842 -67 0 846 -67 0 850 -68 0 854 -68 0 858 -69 0 862 -69 0 866 -70 0 870 -71 0 874 -72 0 878 -73 0 882 -74 0 886 -75 0 889 -77 0 893 -78 0 897 -80 0 900 -81 0 904 -83 0 907 -85 0 911 -86 0 915 -88 0 919 -89 0 923 -90 0 927 -90 0 931 -91 0 935 -90 0 939 -90 0 942 -89 0 946 -88 0 950 -87 0 954 -86 0 958 -85 0 962 -84 0 966 -83 0 970 -83 0 974 -83 0 978 -83 0 982 -83 0 986 -84 0 990 -84 0 993 -85 0 997 -86 0 1001 -87 0 1005 -88 0 1009 -89 0 1013 -91 0 1016 -92 0 1020 -93 0 1024 -95 0 1028 -96 0 1032 -97 0 1035 -99 0 1039 -100 0 1043 -101 0 1047 -102 0 1051 -103 0 1054 -105 0 1058 -106 0 1062 -107 0 1066 -108 0 1070 -110 0 1073 -111 0 1077 -113 0 1081 -114 0 1085 -116 0 1088 -117 0 1092 -118 0 1096 -119 0 1100 -120 0 1104 -121 0 1108 -121 0 1112 -121 0 1116 -121 0 1120 -121 0 1124 -120 0 1128 -119 0 1131 -118 0 1135 -117 0 1139 -116 0 1143 -115 0 1147 -113 0 1151 -112 0 1154 -111 0 1158 -111 0 1162 -110 0 1166 -109 0 1170 -108 0 1174 -108 0 1178 -107 0 1182 -107 0 1186 -106 0 1190 -105 0 1194 -105 0 1198 -104 0 1202 -103 0 1206 -102 0 1209 -101 0 1213 -99 0 1217 -98 0 1220 -96 0 1224 -94 0 1227 -91 0 1230 -89 0 1233 -86 0 1236 -84 0 1239 -81 0 1242 -79 0 1246 -76 0 1249 -74 0 1252 -72 0 1256 -70 0 1260 -69 0 1264 -68 0 1267 -67 0 1271 -66 0 1275 -65 0 1279 -64 0 1283 -64 0 1287 -63 0 1291 -62 0 1295 -61 0 1299 -60 0 1303 -59 0 1306 -58 0 1310 -57 0 1314 -56 0 1318 -55 0 1322 -54 0 1326 -53 0 1330 -52 0 1334 -51 0 1337 -50 0 1341 -49 0 1345 -48 0 1349 -47 0 1353 -46 0 1357 -46 0 1361 -46 0 1365 -47 0 1369 -47 0 1373 -48 0 1377 -50 0 1380 -51 0 1384 -52 0 1388 -53 0 1392 -54 0 1396 -55 0 1400 -55 0 1404 -55 0 1408 -54 0 1412 -54 0 1415 -52 0 1419 -51 0 1423 -49 0 1426 -47 0 1430 -46 0 1433 -44 0 1437 -42 0 1440 -40 0 1444 -38 0 1448 -36 0 1451 -35 0 1455 -33 0 1459 -31 0 1462 -30 0 1466 -29 0 1470 -28 0 1474 -28 0 1478 -27 0 1482 -27 0 1486 -27 0 1490 -28 0 1494 -28 0 1498 -29 0 1502 -30 0 1505 -32 0 1509 -33 0 1513 -34 0 1517 -36 0 1520 -38 0 1524 -39 0 1528 -40 0 1532 -41 0 1536 -42 0 1540 -43 0 1544 -43 0 1548 -43 0 1551 -42 0 1555 -41 0 1559 -40 0 1563 -39 0 1567 -38 0 1571 -37 0 1575 -36 0 1579 -35 0 1583 -35 0 1587 -34 0 1591 -34 0 1595 -34 0 1599 -34 0 1602 -35 0 1606 -35 0 1610 -36 0 1614 -36 0 1619 -36 0 1623 -36 0 1627 -35 0 1630 -35 0 1634 -34 0 1638 -33 0 1642 -32 0 1646 -31 0 1650 -29 0 1653 -28 0 1657 -26 0 1661 -25 0 1664 -23 0 1668 -21 0 1671 -19 0 1675 -17 0 1678 -15 0 1681 -13 0 1685 -10 0 1688 -8 0 1691 -6 0 1694 -3 0 1698 -1 0 1701 1 0 1704 3 0 1708 6 0 1711 8 0 1715 10 0 1718 11 0 1722 13 0 1725 15 0 1729 17 0 1733 18 0 1736 19 0 1740 21 0 1744 22 0 1748 23 0 1752 24 0 1756 24 0 1760 25 0 1764 25 0 1768 25 0 1772 24 0 1776 24 0 1780 23 0 1784 22 0 1788 21 0 1791 20 0 1795 20 0 1799 19 0 1803 18 0 1807 17 0 1811 16 0 1815 16 0 1819 15 0 1823 15 0 1827 14 0 1831 14 0 1835 14 0 1839 13 0 1843 13 0 1847 13 0 1851 12 0 1855 12 0 1859 11 0 1863 11 0 1867 10 0 1871 10 0 1875 9 0 1878 8 0 1882 7 0 1886 7 0 1890 6 0 1894 5 0 1898 4 0 1902 3 0 1906 3 0 1910 2 0 1914 1 0 1918 1 0 1922 0 0 1926 -1 0 1930 -1 0 1934 -1 0 1938 -1 0 1942 -1 0 1946 -1 0 1950 -1 0 1954 0 0 1958 0 0 end frb_curve_t