begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 26 | Segment [0] from curve 39 | 600 samples [2104..2703] | 0.115 of the curve [0.403__0.518] | Segment [1] from curve 45 (reversed) | 600 samples [ 163.. 762] | 0.107 of the curve [0.029__0.136] | Candidate after realignment and trimming: | Candidate index = 26 | Segment [0] from curve 39 | 513 samples [2147..2659] | 0.098 of the curve [0.411__0.509] | Segment [1] from curve 45 (reversed) | 513 samples [ 207.. 719] | 0.091 of the curve [0.037__0.128] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 1 0 7 3 0 11 5 0 15 6 0 18 8 0 22 10 0 25 12 0 29 14 0 32 16 0 36 17 0 40 19 0 43 20 0 47 22 0 51 23 0 55 24 0 59 25 0 63 25 0 67 26 0 71 26 0 75 26 0 79 26 0 83 26 0 87 25 0 91 25 0 95 25 0 99 25 0 103 24 0 107 25 0 111 25 0 115 25 0 119 25 0 123 25 0 127 25 0 131 25 0 135 25 0 139 25 0 143 25 0 147 25 0 151 25 0 155 25 0 159 25 0 163 25 0 167 25 0 171 26 0 175 26 0 179 27 0 183 27 0 187 27 0 191 28 0 195 28 0 199 29 0 203 29 0 207 29 0 210 30 0 214 30 0 218 30 0 222 31 0 226 31 0 230 32 0 234 33 0 238 34 0 242 35 0 246 36 0 250 36 0 254 37 0 258 38 0 262 39 0 265 40 0 269 41 0 273 43 0 277 44 0 280 45 0 284 47 0 288 49 0 291 50 0 295 52 0 299 53 0 303 55 0 306 56 0 310 57 0 314 58 0 318 59 0 322 59 0 326 59 0 330 59 0 334 59 0 338 58 0 342 58 0 346 58 0 350 57 0 354 57 0 358 57 0 362 57 0 366 57 0 370 58 0 374 58 0 378 58 0 382 58 0 386 58 0 390 58 0 394 58 0 398 57 0 402 57 0 406 56 0 410 55 0 413 54 0 417 52 0 421 51 0 424 49 0 428 47 0 432 45 0 435 44 0 439 42 0 442 40 0 446 38 0 450 37 0 453 35 0 457 34 0 461 32 0 464 30 0 468 29 0 471 27 0 475 25 0 478 23 0 482 21 0 485 19 0 488 16 0 492 14 0 495 11 0 498 8 0 501 6 0 503 3 0 506 0 0 509 -3 0 512 -5 0 515 -8 0 518 -11 0 521 -13 0 524 -16 0 527 -18 0 531 -21 0 534 -23 0 537 -25 0 541 -27 0 544 -29 0 548 -30 0 552 -32 0 556 -33 0 559 -34 0 563 -35 0 567 -36 0 571 -37 0 575 -38 0 579 -39 0 583 -40 0 587 -41 0 590 -42 0 594 -43 0 598 -45 0 602 -46 0 605 -48 0 609 -49 0 613 -51 0 616 -52 0 620 -54 0 624 -55 0 628 -57 0 631 -58 0 635 -59 0 639 -61 0 643 -62 0 646 -64 0 650 -65 0 654 -66 0 658 -68 0 661 -69 0 665 -70 0 669 -72 0 673 -73 0 677 -74 0 680 -75 0 684 -76 0 688 -77 0 692 -78 0 696 -79 0 700 -79 0 704 -80 0 708 -81 0 712 -81 0 716 -82 0 720 -83 0 724 -83 0 728 -83 0 732 -84 0 736 -84 0 740 -84 0 744 -84 0 748 -84 0 752 -84 0 756 -84 0 760 -84 0 764 -83 0 768 -83 0 772 -83 0 776 -83 0 780 -82 0 784 -82 0 788 -82 0 792 -81 0 796 -81 0 800 -80 0 803 -80 0 807 -79 0 811 -78 0 815 -77 0 819 -76 0 823 -75 0 827 -74 0 831 -73 0 834 -72 0 838 -71 0 842 -71 0 846 -70 0 850 -71 0 854 -71 0 858 -72 0 862 -73 0 866 -75 0 869 -77 0 873 -79 0 876 -81 0 879 -83 0 883 -85 0 886 -87 0 890 -89 0 894 -90 0 898 -90 0 902 -91 0 906 -90 0 910 -90 0 914 -89 0 917 -88 0 921 -87 0 925 -86 0 929 -85 0 933 -84 0 937 -84 0 941 -83 0 945 -83 0 949 -82 0 953 -82 0 957 -82 0 961 -81 0 965 -80 0 969 -79 0 972 -78 0 976 -77 0 980 -76 0 984 -74 0 988 -73 0 991 -72 0 995 -71 0 999 -70 0 1003 -69 0 1007 -69 0 1011 -69 0 1015 -69 0 1019 -70 0 1023 -71 0 1027 -72 0 1030 -74 0 1034 -75 0 1038 -77 0 1041 -79 0 1045 -81 0 1048 -82 0 1052 -84 0 1056 -85 0 1060 -87 0 1064 -88 0 1067 -89 0 1071 -89 0 1075 -90 0 1079 -91 0 1083 -92 0 1087 -92 0 1091 -93 0 1095 -94 0 1099 -94 0 1103 -94 0 1107 -94 0 1111 -94 0 1115 -94 0 1119 -94 0 1123 -93 0 1127 -93 0 1131 -92 0 1135 -91 0 1139 -91 0 1143 -91 0 1147 -90 0 1151 -90 0 1155 -91 0 1159 -91 0 1163 -92 0 1166 -93 0 1170 -94 0 1174 -95 0 1178 -95 0 1182 -96 0 1186 -97 0 1190 -97 0 1194 -97 0 1198 -97 0 1202 -97 0 1206 -96 0 1210 -96 0 1214 -95 0 1218 -94 0 1222 -93 0 1225 -92 0 1229 -91 0 1233 -90 0 1237 -89 0 1241 -88 0 1245 -86 0 1248 -85 0 1252 -83 0 1256 -82 0 1259 -80 0 1263 -78 0 1266 -76 0 1270 -75 0 1274 -73 0 1277 -71 0 1281 -70 0 1285 -68 0 1288 -66 0 1292 -65 0 1296 -64 0 1300 -62 0 1303 -61 0 1307 -59 0 1311 -58 0 1314 -56 0 1318 -55 0 1322 -53 0 1325 -51 0 1329 -50 0 1332 -48 0 1336 -46 0 1339 -44 0 1343 -42 0 1346 -40 0 1350 -37 0 1353 -35 0 1356 -33 0 1360 -31 0 1363 -28 0 1366 -26 0 1369 -24 0 1373 -21 0 1376 -19 0 1379 -17 0 1382 -14 0 1385 -12 0 1389 -10 0 1392 -7 0 1395 -5 0 1398 -2 0 1402 0 0 1405 2 0 1408 5 0 1411 7 0 1415 9 0 1418 11 0 1422 13 0 1425 15 0 1429 17 0 1432 19 0 1436 20 0 1440 22 0 1443 23 0 1447 24 0 1451 25 0 1455 26 0 1459 27 0 1463 28 0 1467 29 0 1471 30 0 1474 31 0 1478 31 0 1482 32 0 1486 32 0 1490 33 0 1494 33 0 1498 33 0 1502 33 0 1506 33 0 1510 33 0 1514 32 0 1518 31 0 1522 31 0 1526 30 0 1530 28 0 1534 27 0 1537 26 0 1541 24 0 1545 23 0 1548 21 0 1552 19 0 1555 17 0 1558 14 0 1562 12 0 1565 10 0 1568 7 0 1571 4 0 1574 1 0 1576 -2 0 1579 -5 0 1581 -8 0 1584 -11 0 1586 -15 0 1588 -18 0 1590 -22 0 1591 -25 0 1593 -29 0 1595 -32 0 1597 -36 0 1599 -39 0 1602 -42 0 1605 -45 0 1607 -48 0 1611 -50 0 1614 -52 0 1617 -54 0 1621 -56 0 1625 -57 0 1629 -58 0 1633 -58 0 1637 -58 0 1641 -57 0 1645 -57 0 1649 -56 0 1653 -55 0 1656 -54 0 1660 -53 0 1664 -52 0 1668 -51 0 1672 -50 0 1676 -49 0 1680 -49 0 1684 -49 0 1688 -48 0 1692 -48 0 1696 -48 0 1700 -48 0 1704 -48 0 1708 -48 0 1712 -48 0 1716 -48 0 1720 -48 0 1724 -48 0 1728 -48 0 1732 -48 0 1736 -48 0 1740 -48 0 1744 -48 0 1748 -47 0 1752 -47 0 1756 -46 0 1760 -46 0 1764 -45 0 1768 -44 0 1772 -44 0 1776 -43 0 1780 -43 0 1783 -42 0 1787 -41 0 1791 -40 0 1795 -39 0 1799 -37 0 1803 -36 0 1806 -34 0 1810 -32 0 1813 -31 0 1817 -29 0 1821 -28 0 1825 -26 0 1828 -25 0 1832 -25 0 1836 -24 0 1840 -24 0 1844 -23 0 1848 -23 0 1852 -23 0 1856 -23 0 1860 -23 0 1864 -22 0 1868 -21 0 1872 -20 0 1876 -19 0 1880 -18 0 1883 -16 0 1887 -14 0 1890 -12 0 1894 -10 0 1897 -8 0 1900 -6 0 1904 -4 0 1907 -2 0 1911 0 0 end frb_curve_t