begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 26 | Segment [0] from curve 39 | 600 samples [2104..2703] | 0.115 of the curve [0.403__0.518] | Segment [1] from curve 45 (reversed) | 600 samples [ 163.. 762] | 0.107 of the curve [0.029__0.136] | Candidate after realignment and trimming: | Candidate index = 26 | Segment [0] from curve 39 | 513 samples [2147..2659] | 0.098 of the curve [0.411__0.509] | Segment [1] from curve 45 (reversed) | 513 samples [ 207.. 719] | 0.091 of the curve [0.037__0.128] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 -1 0 12 -2 0 16 -2 0 20 -3 0 24 -4 0 28 -4 0 32 -4 0 36 -4 0 40 -4 0 44 -3 0 47 -2 0 51 -1 0 55 1 0 58 3 0 62 5 0 65 7 0 68 9 0 71 12 0 75 14 0 78 16 0 82 18 0 85 20 0 89 21 0 93 22 0 97 23 0 101 24 0 105 24 0 109 24 0 113 25 0 117 25 0 121 26 0 125 26 0 129 27 0 132 28 0 136 29 0 140 30 0 144 31 0 148 33 0 151 34 0 155 36 0 159 37 0 162 39 0 166 41 0 170 42 0 173 44 0 177 46 0 181 47 0 184 49 0 188 51 0 191 53 0 195 55 0 198 56 0 202 58 0 205 60 0 209 62 0 212 64 0 216 66 0 219 68 0 223 70 0 226 72 0 229 75 0 233 77 0 236 79 0 239 82 0 242 84 0 245 87 0 248 90 0 251 92 0 254 95 0 257 97 0 260 100 0 263 102 0 267 105 0 270 108 0 273 110 0 276 113 0 279 115 0 282 118 0 285 120 0 288 123 0 291 126 0 294 129 0 297 131 0 299 134 0 302 137 0 305 140 0 308 143 0 311 146 0 313 148 0 316 151 0 319 154 0 322 156 0 325 159 0 329 162 0 332 164 0 335 166 0 338 169 0 341 171 0 345 173 0 348 175 0 352 177 0 355 179 0 359 181 0 362 183 0 366 184 0 370 186 0 373 187 0 377 189 0 381 190 0 385 192 0 388 193 0 392 194 0 396 195 0 400 197 0 404 198 0 408 199 0 412 200 0 415 200 0 419 201 0 423 201 0 427 202 0 431 202 0 435 202 0 439 202 0 443 203 0 447 203 0 451 203 0 455 203 0 459 203 0 463 203 0 467 204 0 471 204 0 475 204 0 479 204 0 483 203 0 487 203 0 491 202 0 495 202 0 499 201 0 503 200 0 507 199 0 511 198 0 515 197 0 519 197 0 523 196 0 527 195 0 530 194 0 534 194 0 538 193 0 542 192 0 546 192 0 550 191 0 554 190 0 558 189 0 562 188 0 566 187 0 569 185 0 573 184 0 577 182 0 580 180 0 584 179 0 587 177 0 591 175 0 595 173 0 598 172 0 602 170 0 606 168 0 609 167 0 613 166 0 617 164 0 621 163 0 625 162 0 628 161 0 632 160 0 636 159 0 640 158 0 644 157 0 648 157 0 652 156 0 656 155 0 660 154 0 663 153 0 667 151 0 671 150 0 675 148 0 678 146 0 681 144 0 685 142 0 688 140 0 691 137 0 694 134 0 697 132 0 700 129 0 704 127 0 707 125 0 710 123 0 714 121 0 717 119 0 721 117 0 724 115 0 728 114 0 732 112 0 735 110 0 739 109 0 743 107 0 746 106 0 750 104 0 754 102 0 757 101 0 761 99 0 764 97 0 768 95 0 772 93 0 775 92 0 779 90 0 782 88 0 786 87 0 790 85 0 794 84 0 797 82 0 801 81 0 805 80 0 809 78 0 812 77 0 816 75 0 820 73 0 823 72 0 827 70 0 831 69 0 834 67 0 838 66 0 842 66 0 846 65 0 850 65 0 854 65 0 858 65 0 862 66 0 866 66 0 870 67 0 874 67 0 878 68 0 882 68 0 886 69 0 890 70 0 894 70 0 898 71 0 902 72 0 905 73 0 909 74 0 913 75 0 917 76 0 921 77 0 925 78 0 929 78 0 933 78 0 937 78 0 941 78 0 945 78 0 949 78 0 953 78 0 957 78 0 961 77 0 965 77 0 969 78 0 973 78 0 977 78 0 981 78 0 985 78 0 989 78 0 993 78 0 997 78 0 1001 78 0 1005 77 0 1009 77 0 1013 76 0 1017 76 0 1021 75 0 1025 74 0 1028 74 0 1032 73 0 1036 73 0 1040 73 0 1044 72 0 1048 72 0 1052 72 0 1056 73 0 1060 73 0 1064 73 0 1068 73 0 1072 73 0 1076 73 0 1080 73 0 1084 74 0 1088 74 0 1092 74 0 1096 74 0 1100 74 0 1104 74 0 1108 74 0 1112 74 0 1116 73 0 1120 73 0 1124 73 0 1128 74 0 1132 74 0 1136 74 0 1140 74 0 1144 74 0 1148 74 0 1152 74 0 1156 74 0 1160 73 0 1164 73 0 1168 72 0 1172 72 0 1176 71 0 1180 70 0 1184 70 0 1188 69 0 1192 68 0 1196 67 0 1200 67 0 1204 66 0 1208 65 0 1212 64 0 1216 64 0 1219 63 0 1223 61 0 1227 60 0 1231 59 0 1235 57 0 1238 56 0 1242 54 0 1246 53 0 1249 51 0 1253 49 0 1256 48 0 1260 46 0 1264 45 0 1268 44 0 1272 42 0 1275 41 0 1279 41 0 1283 40 0 1287 40 0 1291 39 0 1295 39 0 1299 39 0 1303 40 0 1307 40 0 1311 41 0 1315 41 0 1319 42 0 1323 43 0 1327 44 0 1331 45 0 1335 46 0 1338 47 0 1342 48 0 1346 49 0 1350 50 0 1354 51 0 1358 52 0 1362 53 0 1365 54 0 1369 56 0 1373 57 0 1377 58 0 1380 60 0 1384 61 0 1388 63 0 1391 65 0 1395 67 0 1398 70 0 1401 72 0 1404 75 0 1407 77 0 1410 80 0 1413 82 0 1416 85 0 1420 87 0 1423 90 0 1426 92 0 1430 94 0 1433 95 0 1437 97 0 1441 99 0 1444 100 0 1448 102 0 1452 103 0 1455 105 0 1459 106 0 1463 108 0 1467 109 0 1470 110 0 1474 111 0 1478 112 0 1482 113 0 1486 114 0 1490 114 0 1494 114 0 1498 115 0 1502 116 0 1506 116 0 1510 117 0 1514 118 0 1518 119 0 1521 120 0 1525 121 0 1529 122 0 1533 123 0 1537 123 0 1541 124 0 1545 124 0 1549 124 0 1553 123 0 1557 122 0 1561 121 0 1565 120 0 1568 119 0 1572 117 0 1576 116 0 1580 115 0 1584 114 0 1587 112 0 1591 111 0 1595 110 0 1599 109 0 1603 108 0 1606 107 0 1610 106 0 1614 105 0 1618 103 0 1622 102 0 1626 101 0 1629 100 0 1633 98 0 1637 97 0 1641 95 0 1644 94 0 1648 92 0 1652 91 0 1655 89 0 1659 88 0 1663 87 0 1667 86 0 1671 85 0 1675 84 0 1679 83 0 1682 83 0 1686 82 0 1690 81 0 1694 81 0 1698 80 0 1702 79 0 1706 79 0 1710 79 0 1714 78 0 1718 78 0 1722 77 0 1726 77 0 1730 76 0 1734 75 0 1738 74 0 1742 73 0 1746 72 0 1749 71 0 1753 70 0 1757 69 0 1761 68 0 1765 67 0 1769 66 0 1773 65 0 1776 64 0 1780 63 0 1784 62 0 1788 60 0 1792 59 0 1795 57 0 1799 56 0 1803 54 0 1806 52 0 1809 50 0 1813 48 0 1816 45 0 1819 43 0 1823 41 0 1826 38 0 1829 36 0 1832 33 0 1835 31 0 1838 28 0 1841 26 0 1845 23 0 1848 21 0 1851 19 0 1854 16 0 1858 15 0 1861 13 0 1865 11 0 1869 10 0 1873 8 0 1876 7 0 1880 6 0 1884 5 0 1888 4 0 1892 4 0 1896 3 0 1900 2 0 1904 1 0 1908 0 0 end frb_curve_t