begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 27 | Segment [0] from curve 42 | 1540 samples [ 78..1617] | 0.295 of the curve [0.015__0.310] | Segment [1] from curve 44 (reversed) | 982 samples [ 696..1677] | 0.198 of the curve [0.140__0.338] | Candidate after realignment and trimming: | Candidate index = 27 | Segment [0] from curve 42 | 513 samples [ 591..1103] | 0.098 of the curve [0.113__0.212] | Segment [1] from curve 44 (reversed) | 513 samples [ 931..1443] | 0.103 of the curve [0.188__0.291] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -1 0 8 -1 0 12 -2 0 16 -3 0 20 -3 0 24 -4 0 27 -5 0 31 -6 0 35 -7 0 39 -8 0 43 -9 0 47 -10 0 51 -11 0 54 -13 0 58 -14 0 62 -15 0 66 -17 0 69 -18 0 73 -20 0 77 -21 0 81 -22 0 85 -23 0 88 -25 0 92 -26 0 96 -27 0 100 -28 0 104 -29 0 108 -30 0 112 -31 0 115 -32 0 119 -33 0 123 -34 0 127 -35 0 131 -37 0 134 -38 0 138 -39 0 142 -41 0 146 -42 0 149 -44 0 153 -45 0 157 -46 0 161 -47 0 165 -48 0 169 -49 0 173 -49 0 177 -50 0 181 -51 0 185 -51 0 189 -51 0 193 -52 0 197 -52 0 201 -52 0 205 -52 0 209 -52 0 213 -52 0 217 -53 0 221 -53 0 225 -53 0 229 -53 0 232 -54 0 236 -54 0 240 -54 0 244 -54 0 248 -54 0 252 -55 0 256 -55 0 260 -55 0 264 -55 0 268 -55 0 272 -56 0 276 -56 0 280 -56 0 284 -57 0 288 -57 0 292 -58 0 296 -58 0 300 -59 0 304 -59 0 308 -59 0 312 -59 0 316 -58 0 320 -58 0 324 -57 0 328 -56 0 332 -55 0 336 -54 0 340 -53 0 344 -52 0 347 -51 0 351 -51 0 355 -51 0 359 -50 0 363 -50 0 367 -50 0 371 -50 0 375 -49 0 379 -49 0 383 -48 0 387 -48 0 391 -47 0 395 -46 0 399 -44 0 403 -43 0 406 -41 0 410 -40 0 413 -38 0 417 -36 0 421 -34 0 424 -33 0 428 -31 0 432 -30 0 436 -29 0 439 -28 0 443 -27 0 447 -26 0 451 -25 0 455 -24 0 459 -22 0 462 -21 0 466 -19 0 470 -17 0 473 -15 0 476 -13 0 479 -10 0 481 -7 0 483 -3 0 485 0 0 487 4 0 489 8 0 490 11 0 492 15 0 495 18 0 497 21 0 500 24 0 503 26 0 507 28 0 510 30 0 514 32 0 518 33 0 522 34 0 525 35 0 529 36 0 533 37 0 537 38 0 541 39 0 545 40 0 549 41 0 552 42 0 556 43 0 560 45 0 564 46 0 568 47 0 572 48 0 575 49 0 579 49 0 583 50 0 587 50 0 591 51 0 595 51 0 599 51 0 603 51 0 607 51 0 611 51 0 615 51 0 619 51 0 623 50 0 627 50 0 631 49 0 635 49 0 639 48 0 643 47 0 647 46 0 651 45 0 655 44 0 658 43 0 662 42 0 666 41 0 670 40 0 674 39 0 678 38 0 682 38 0 686 37 0 690 37 0 694 37 0 698 38 0 702 38 0 706 39 0 709 40 0 713 42 0 717 44 0 720 45 0 724 47 0 727 50 0 731 52 0 734 54 0 737 56 0 741 58 0 744 60 0 747 62 0 751 64 0 755 66 0 758 68 0 762 69 0 766 70 0 770 71 0 773 72 0 777 73 0 781 74 0 785 75 0 789 76 0 793 77 0 797 78 0 801 79 0 804 81 0 808 82 0 811 84 0 815 87 0 818 89 0 821 91 0 824 94 0 827 96 0 830 99 0 833 102 0 836 105 0 839 107 0 842 109 0 846 112 0 849 114 0 853 116 0 856 118 0 860 119 0 863 121 0 867 122 0 871 124 0 875 125 0 879 126 0 883 127 0 887 127 0 891 128 0 894 129 0 898 129 0 902 130 0 906 130 0 910 131 0 914 131 0 918 132 0 922 132 0 926 132 0 930 132 0 934 132 0 938 132 0 942 132 0 946 131 0 950 131 0 954 130 0 958 130 0 962 129 0 966 129 0 970 128 0 974 128 0 978 127 0 982 127 0 986 127 0 990 127 0 994 127 0 998 127 0 1002 127 0 1006 128 0 1010 128 0 1014 128 0 1018 128 0 1022 128 0 1026 128 0 1030 128 0 1034 128 0 1038 127 0 1042 127 0 1046 127 0 1050 127 0 1054 127 0 1058 128 0 1062 128 0 1066 129 0 1069 131 0 1073 132 0 1077 134 0 1080 136 0 1084 138 0 1087 140 0 1090 142 0 1094 144 0 1097 147 0 1100 149 0 1104 151 0 1107 153 0 1111 155 0 1114 157 0 1118 159 0 1121 161 0 1125 162 0 1129 164 0 1132 165 0 1136 166 0 1140 167 0 1144 167 0 1148 168 0 1152 168 0 1156 168 0 1160 167 0 1164 167 0 1168 167 0 1172 166 0 1176 165 0 1180 165 0 1184 164 0 1188 163 0 1192 162 0 1195 160 0 1199 159 0 1203 157 0 1206 155 0 1210 153 0 1213 151 0 1216 149 0 1219 146 0 1223 144 0 1226 142 0 1230 140 0 1233 138 0 1237 137 0 1241 136 0 1245 135 0 1249 134 0 1252 133 0 1256 132 0 1260 131 0 1264 130 0 1268 130 0 1272 129 0 1276 128 0 1280 127 0 1284 126 0 1288 125 0 1291 124 0 1295 122 0 1299 120 0 1302 119 0 1306 117 0 1309 115 0 1313 112 0 1316 110 0 1319 108 0 1322 106 0 1326 103 0 1329 101 0 1332 98 0 1335 96 0 1339 94 0 1342 92 0 1345 89 0 1349 87 0 1352 85 0 1355 83 0 1359 81 0 1363 79 0 1366 78 0 1370 77 0 1374 76 0 1378 75 0 1382 74 0 1386 74 0 1390 74 0 1394 74 0 1398 74 0 1402 74 0 1406 75 0 1410 76 0 1414 77 0 1418 77 0 1421 78 0 1425 79 0 1429 79 0 1433 79 0 1437 79 0 1441 79 0 1445 78 0 1449 77 0 1453 76 0 1457 74 0 1461 73 0 1464 72 0 1468 71 0 1472 69 0 1476 68 0 1480 67 0 1483 66 0 1487 65 0 1491 64 0 1495 63 0 1499 62 0 1503 61 0 1507 60 0 1511 59 0 1514 58 0 1518 56 0 1522 55 0 1526 53 0 1529 52 0 1533 50 0 1537 49 0 1540 47 0 1544 46 0 1548 44 0 1551 43 0 1555 42 0 1559 40 0 1563 39 0 1567 38 0 1570 36 0 1574 35 0 1578 33 0 1582 32 0 1585 31 0 1589 29 0 1593 28 0 1597 26 0 1600 25 0 1604 24 0 1608 23 0 1612 22 0 1616 22 0 1620 22 0 1624 22 0 1628 22 0 1632 23 0 1636 23 0 1640 23 0 1644 24 0 1648 24 0 1652 24 0 1656 25 0 1660 25 0 1664 25 0 1668 25 0 1672 25 0 1676 25 0 1680 25 0 1684 25 0 1688 25 0 1692 25 0 1696 24 0 1700 23 0 1704 22 0 1707 21 0 1711 20 0 1715 18 0 1719 17 0 1722 15 0 1726 13 0 1729 11 0 1733 10 0 1737 8 0 1740 6 0 1744 5 0 1748 4 0 1752 3 0 1755 2 0 1759 1 0 1763 0 0 1767 0 0 1771 -1 0 1775 -1 0 1779 -2 0 1783 -2 0 1787 -3 0 1791 -3 0 1795 -4 0 1799 -4 0 1803 -5 0 1807 -5 0 1811 -5 0 1815 -6 0 1819 -6 0 1823 -6 0 1827 -6 0 1831 -5 0 1835 -5 0 1839 -4 0 1843 -4 0 1847 -3 0 1851 -2 0 1854 -1 0 1858 1 0 1862 2 0 1866 3 0 1870 4 0 1873 6 0 1877 7 0 1881 7 0 1885 8 0 1889 8 0 1893 8 0 1897 8 0 1901 8 0 1905 7 0 1909 6 0 1913 6 0 1917 5 0 1921 3 0 1925 2 0 1928 1 0 1932 0 0 end frb_curve_t