begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 27 | Segment [0] from curve 42 | 1540 samples [ 78..1617] | 0.295 of the curve [0.015__0.310] | Segment [1] from curve 44 (reversed) | 982 samples [ 696..1677] | 0.198 of the curve [0.140__0.338] | Candidate after realignment and trimming: | Candidate index = 27 | Segment [0] from curve 42 | 513 samples [ 591..1103] | 0.098 of the curve [0.113__0.212] | Segment [1] from curve 44 (reversed) | 513 samples [ 931..1443] | 0.103 of the curve [0.188__0.291] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 1 0 12 1 0 16 2 0 20 2 0 24 3 0 28 4 0 32 4 0 36 5 0 40 6 0 44 6 0 47 7 0 51 8 0 55 8 0 59 9 0 63 9 0 67 10 0 71 11 0 75 11 0 79 12 0 83 13 0 87 14 0 91 14 0 95 15 0 99 16 0 103 16 0 107 16 0 111 16 0 115 16 0 119 16 0 123 16 0 127 16 0 131 16 0 135 16 0 139 16 0 143 17 0 147 17 0 150 18 0 154 19 0 158 20 0 162 22 0 166 23 0 169 25 0 173 26 0 177 28 0 180 30 0 184 32 0 187 34 0 191 35 0 195 37 0 198 39 0 202 40 0 206 42 0 209 43 0 213 44 0 217 45 0 221 46 0 225 46 0 229 46 0 233 46 0 237 46 0 241 46 0 245 46 0 249 46 0 253 46 0 257 46 0 261 46 0 265 46 0 269 46 0 273 46 0 277 46 0 281 45 0 285 45 0 289 45 0 293 45 0 297 45 0 301 45 0 305 45 0 309 45 0 313 45 0 317 46 0 321 46 0 325 47 0 329 47 0 333 48 0 337 49 0 341 50 0 344 51 0 348 52 0 352 53 0 356 54 0 360 55 0 364 55 0 368 56 0 372 57 0 376 57 0 380 58 0 384 58 0 388 58 0 392 58 0 396 58 0 400 58 0 404 58 0 408 58 0 412 58 0 416 58 0 420 58 0 424 58 0 428 58 0 432 58 0 436 57 0 440 57 0 444 57 0 448 57 0 452 57 0 456 57 0 460 58 0 464 58 0 468 59 0 472 59 0 476 60 0 480 60 0 483 60 0 487 61 0 491 61 0 495 60 0 499 60 0 503 59 0 507 59 0 511 58 0 515 57 0 519 56 0 523 55 0 527 54 0 531 53 0 535 53 0 539 52 0 542 51 0 546 50 0 550 49 0 554 48 0 558 47 0 562 47 0 566 46 0 570 45 0 574 44 0 578 43 0 581 42 0 585 41 0 589 40 0 593 39 0 597 38 0 601 37 0 605 36 0 609 35 0 612 34 0 616 34 0 620 33 0 624 33 0 628 33 0 632 32 0 636 32 0 640 32 0 644 32 0 648 32 0 652 32 0 656 32 0 660 32 0 664 31 0 668 31 0 672 31 0 676 30 0 680 30 0 684 29 0 688 29 0 692 28 0 696 28 0 700 28 0 704 27 0 708 27 0 712 27 0 716 27 0 720 27 0 724 27 0 728 27 0 732 27 0 736 27 0 740 28 0 744 28 0 748 28 0 752 29 0 756 29 0 760 30 0 764 31 0 768 31 0 772 32 0 776 33 0 780 34 0 783 35 0 787 36 0 791 37 0 795 38 0 799 39 0 803 40 0 807 40 0 811 41 0 815 41 0 819 42 0 823 42 0 827 43 0 831 43 0 834 44 0 838 45 0 842 46 0 846 47 0 850 49 0 853 50 0 857 52 0 861 54 0 864 55 0 868 57 0 872 59 0 875 60 0 879 62 0 883 63 0 887 64 0 891 65 0 894 66 0 898 67 0 902 68 0 906 69 0 910 70 0 914 71 0 918 72 0 922 73 0 925 74 0 929 75 0 933 76 0 937 78 0 941 79 0 944 80 0 948 81 0 952 83 0 956 84 0 960 85 0 963 86 0 967 87 0 971 89 0 975 90 0 979 91 0 982 93 0 986 94 0 990 96 0 994 97 0 997 98 0 1001 99 0 1005 101 0 1009 102 0 1013 103 0 1017 104 0 1021 105 0 1024 105 0 1028 106 0 1032 107 0 1036 107 0 1040 108 0 1044 109 0 1048 109 0 1052 110 0 1056 110 0 1060 110 0 1064 111 0 1068 111 0 1072 111 0 1076 111 0 1080 111 0 1084 112 0 1088 111 0 1092 111 0 1096 111 0 1100 111 0 1104 111 0 1108 111 0 1112 111 0 1116 111 0 1120 111 0 1124 111 0 1128 112 0 1132 112 0 1136 112 0 1140 113 0 1144 113 0 1148 114 0 1152 115 0 1156 116 0 1160 117 0 1163 118 0 1167 119 0 1171 121 0 1175 122 0 1178 123 0 1182 125 0 1186 126 0 1190 127 0 1194 128 0 1198 129 0 1201 130 0 1205 131 0 1209 132 0 1213 133 0 1217 133 0 1221 134 0 1225 134 0 1229 134 0 1233 134 0 1237 133 0 1241 133 0 1245 132 0 1249 131 0 1253 129 0 1256 128 0 1260 127 0 1264 125 0 1268 124 0 1271 122 0 1275 121 0 1278 119 0 1282 117 0 1286 115 0 1289 114 0 1293 112 0 1296 110 0 1300 108 0 1303 106 0 1307 104 0 1310 102 0 1314 100 0 1317 98 0 1321 96 0 1324 95 0 1328 93 0 1332 92 0 1336 91 0 1340 91 0 1344 90 0 1348 90 0 1352 90 0 1356 91 0 1360 91 0 1364 92 0 1368 93 0 1371 94 0 1375 95 0 1379 96 0 1383 98 0 1387 99 0 1390 100 0 1394 101 0 1398 102 0 1402 103 0 1406 104 0 1410 105 0 1414 106 0 1418 106 0 1422 107 0 1426 107 0 1430 107 0 1434 108 0 1438 108 0 1442 109 0 1446 110 0 1449 111 0 1453 112 0 1457 112 0 1461 113 0 1465 114 0 1469 115 0 1473 115 0 1477 116 0 1481 116 0 1485 117 0 1489 117 0 1493 118 0 1497 118 0 1501 119 0 1505 120 0 1508 121 0 1512 123 0 1516 124 0 1520 126 0 1523 128 0 1527 130 0 1530 132 0 1534 134 0 1537 135 0 1541 137 0 1544 139 0 1548 140 0 1552 142 0 1556 142 0 1560 143 0 1564 143 0 1568 144 0 1572 143 0 1576 143 0 1580 142 0 1583 141 0 1587 140 0 1591 138 0 1594 137 0 1598 135 0 1601 132 0 1604 130 0 1607 127 0 1610 125 0 1613 122 0 1616 119 0 1619 116 0 1622 114 0 1625 111 0 1628 109 0 1631 106 0 1635 104 0 1638 102 0 1641 100 0 1645 98 0 1648 96 0 1652 94 0 1656 92 0 1659 90 0 1663 88 0 1666 87 0 1670 85 0 1673 83 0 1677 81 0 1680 79 0 1683 76 0 1687 74 0 1690 72 0 1693 69 0 1696 67 0 1699 64 0 1702 61 0 1705 59 0 1708 56 0 1711 54 0 1714 51 0 1718 49 0 1721 47 0 1724 44 0 1728 42 0 1731 40 0 1734 38 0 1737 35 0 1741 33 0 1744 30 0 1747 28 0 1750 26 0 1753 23 0 1757 21 0 1760 19 0 1764 17 0 1767 16 0 1771 14 0 1775 13 0 1779 12 0 1783 11 0 1786 10 0 1790 9 0 1794 7 0 1798 6 0 1801 4 0 1805 3 0 1809 1 0 1813 0 0 1816 -2 0 1820 -3 0 1824 -4 0 1828 -5 0 1832 -5 0 1836 -5 0 1840 -6 0 1844 -6 0 1848 -6 0 1852 -6 0 1856 -6 0 1860 -6 0 1864 -6 0 1868 -6 0 1872 -6 0 1876 -7 0 1880 -8 0 1884 -8 0 1888 -9 0 1892 -10 0 1895 -11 0 1899 -11 0 1903 -12 0 1907 -12 0 1911 -12 0 1915 -12 0 1919 -12 0 1923 -11 0 1927 -11 0 1931 -10 0 1935 -8 0 1939 -7 0 1942 -6 0 1946 -4 0 1950 -3 0 1954 -1 0 1957 0 0 end frb_curve_t