begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 33 | Segment [0] from curve 56 | 660 samples [1733..2392] | 0.084 of the curve [0.221__0.304] | Segment [1] from curve 57 (reversed) | 533 samples [1060..1592] | 0.091 of the curve [0.182__0.273] | Candidate after realignment and trimming: | Candidate index = 33 | Segment [0] from curve 56 | 513 samples [1806..2318] | 0.065 of the curve [0.230__0.295] | Segment [1] from curve 57 (reversed) | 513 samples [1070..1582] | 0.088 of the curve [0.184__0.271] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 0 0 12 0 0 16 0 0 20 0 0 24 0 0 28 -1 0 32 -2 0 36 -3 0 39 -4 0 43 -5 0 47 -7 0 51 -9 0 54 -11 0 58 -12 0 61 -14 0 65 -15 0 69 -16 0 73 -17 0 77 -17 0 81 -17 0 85 -17 0 89 -16 0 93 -15 0 96 -14 0 100 -12 0 104 -11 0 107 -9 0 111 -7 0 114 -5 0 118 -3 0 121 -1 0 125 1 0 128 3 0 131 5 0 135 7 0 138 9 0 142 11 0 145 13 0 149 14 0 153 16 0 157 17 0 160 19 0 164 20 0 168 22 0 171 24 0 175 25 0 178 27 0 182 29 0 185 31 0 189 33 0 193 35 0 196 36 0 200 38 0 204 40 0 207 41 0 211 43 0 215 44 0 218 45 0 222 47 0 226 48 0 230 49 0 234 50 0 238 50 0 242 51 0 246 51 0 250 51 0 254 51 0 258 51 0 262 50 0 266 49 0 270 48 0 273 47 0 277 45 0 281 44 0 284 42 0 288 40 0 291 38 0 295 36 0 299 35 0 302 33 0 306 32 0 310 31 0 314 30 0 318 30 0 322 29 0 326 29 0 330 29 0 334 29 0 338 29 0 342 29 0 346 29 0 350 28 0 354 28 0 358 27 0 362 26 0 366 26 0 370 25 0 374 25 0 378 24 0 382 24 0 385 24 0 389 24 0 393 25 0 397 26 0 401 27 0 405 28 0 409 29 0 413 30 0 416 32 0 420 33 0 424 34 0 428 35 0 432 36 0 436 37 0 440 38 0 444 38 0 448 39 0 452 40 0 455 40 0 459 40 0 463 41 0 467 41 0 471 41 0 475 40 0 479 40 0 483 40 0 487 40 0 491 39 0 495 39 0 499 40 0 503 40 0 507 41 0 511 42 0 515 43 0 519 44 0 523 45 0 526 47 0 530 48 0 534 50 0 538 51 0 541 52 0 545 53 0 549 55 0 553 56 0 557 57 0 561 58 0 564 59 0 568 60 0 572 61 0 576 61 0 580 62 0 584 62 0 588 62 0 592 62 0 596 61 0 600 61 0 604 60 0 608 60 0 612 60 0 616 60 0 620 60 0 624 60 0 628 61 0 632 61 0 636 62 0 640 63 0 644 64 0 648 65 0 652 66 0 655 67 0 659 68 0 663 70 0 667 71 0 670 73 0 674 75 0 677 77 0 680 79 0 684 82 0 687 84 0 691 86 0 694 87 0 698 89 0 702 90 0 706 90 0 710 90 0 714 90 0 718 90 0 722 89 0 726 88 0 729 86 0 733 85 0 736 83 0 740 81 0 743 79 0 747 77 0 750 75 0 754 73 0 758 72 0 761 70 0 765 69 0 769 67 0 773 67 0 777 66 0 781 66 0 785 66 0 789 66 0 793 66 0 797 67 0 801 67 0 805 68 0 809 68 0 813 69 0 816 69 0 820 69 0 824 69 0 828 69 0 832 68 0 836 67 0 840 66 0 844 65 0 848 64 0 852 62 0 855 61 0 859 59 0 862 57 0 866 55 0 870 54 0 873 52 0 877 50 0 881 49 0 884 48 0 888 46 0 892 45 0 896 44 0 900 43 0 903 41 0 907 40 0 911 40 0 915 39 0 919 38 0 923 37 0 927 36 0 931 36 0 935 35 0 939 35 0 943 34 0 947 34 0 951 34 0 955 34 0 959 34 0 963 34 0 967 34 0 971 34 0 975 34 0 979 35 0 983 35 0 987 36 0 990 37 0 994 38 0 998 39 0 1002 40 0 1006 41 0 1010 43 0 1013 44 0 1017 45 0 1021 47 0 1025 48 0 1028 49 0 1032 50 0 1036 51 0 1040 52 0 1044 53 0 1048 54 0 1052 55 0 1056 56 0 1060 56 0 1064 57 0 1068 57 0 1072 57 0 1076 57 0 1080 57 0 1084 56 0 1087 55 0 1091 54 0 1095 53 0 1099 52 0 1103 51 0 1107 50 0 1110 48 0 1114 47 0 1118 46 0 1122 46 0 1126 45 0 1130 44 0 1134 44 0 1138 43 0 1142 42 0 1146 42 0 1150 41 0 1154 40 0 1158 40 0 1162 39 0 1166 39 0 1170 38 0 1174 38 0 1177 38 0 1182 37 0 1186 37 0 1190 37 0 1194 37 0 1198 37 0 1201 37 0 1205 37 0 1209 37 0 1213 37 0 1217 36 0 1221 35 0 1225 34 0 1229 33 0 1233 31 0 1236 30 0 1240 28 0 1244 27 0 1248 26 0 1251 24 0 1255 24 0 1259 23 0 1263 22 0 1267 22 0 1271 22 0 1275 22 0 1279 22 0 1283 21 0 1287 21 0 1291 21 0 1295 21 0 1299 20 0 1303 20 0 1307 19 0 1311 19 0 1315 18 0 1319 17 0 1323 17 0 1327 16 0 1331 15 0 1334 14 0 1338 12 0 1342 11 0 1346 10 0 1349 8 0 1353 6 0 1357 5 0 1360 3 0 1364 1 0 1367 -1 0 1371 -3 0 1374 -5 0 1377 -8 0 1381 -10 0 1384 -11 0 1388 -13 0 1391 -15 0 1395 -17 0 1399 -19 0 1402 -20 0 1406 -21 0 1410 -23 0 1414 -24 0 1418 -25 0 1421 -26 0 1425 -27 0 1429 -28 0 1433 -29 0 1437 -30 0 1441 -31 0 1445 -32 0 1449 -33 0 1452 -34 0 1456 -35 0 1460 -37 0 1464 -38 0 1468 -38 0 1472 -39 0 1476 -40 0 1480 -40 0 1484 -40 0 1488 -41 0 1492 -41 0 1496 -41 0 1500 -42 0 1504 -42 0 1507 -43 0 1511 -44 0 1515 -46 0 1519 -47 0 1523 -48 0 1527 -49 0 1530 -50 0 1534 -51 0 1538 -52 0 1542 -52 0 1546 -53 0 1550 -53 0 1554 -53 0 1558 -52 0 1562 -52 0 1566 -51 0 1570 -51 0 1574 -50 0 1578 -49 0 1582 -49 0 1586 -48 0 1590 -46 0 1593 -45 0 1597 -43 0 1601 -42 0 1604 -40 0 1608 -38 0 1612 -37 0 1615 -35 0 1619 -34 0 1623 -33 0 1627 -32 0 1631 -32 0 1635 -32 0 1639 -32 0 1643 -33 0 1647 -33 0 1651 -34 0 1655 -35 0 1659 -36 0 1662 -37 0 1666 -38 0 1670 -39 0 1674 -40 0 1678 -42 0 1682 -43 0 1685 -44 0 1689 -44 0 1693 -45 0 1697 -46 0 1701 -46 0 1705 -47 0 1709 -47 0 1713 -48 0 1717 -48 0 1721 -48 0 1725 -49 0 1729 -49 0 1733 -49 0 1737 -49 0 1741 -49 0 1745 -48 0 1749 -48 0 1753 -48 0 1757 -48 0 1761 -47 0 1765 -47 0 1769 -47 0 1773 -46 0 1777 -45 0 1781 -44 0 1785 -43 0 1788 -42 0 1792 -40 0 1796 -38 0 1799 -36 0 1803 -35 0 1806 -33 0 1810 -31 0 1813 -29 0 1817 -28 0 1821 -27 0 1825 -26 0 1829 -25 0 1833 -25 0 1837 -24 0 1841 -23 0 1845 -23 0 1849 -23 0 1853 -22 0 1857 -21 0 1861 -21 0 1864 -20 0 1868 -19 0 1872 -18 0 1876 -17 0 1880 -16 0 1884 -14 0 1887 -12 0 1891 -11 0 1894 -9 0 1898 -7 0 1902 -6 0 1905 -4 0 1909 -3 0 1913 -1 0 1917 0 0 1921 0 0 1925 1 0 1929 1 0 1933 2 0 1937 2 0 1941 1 0 1945 1 0 1949 1 0 1953 1 0 1957 0 0 1961 0 0 1965 0 0 1969 0 0 end frb_curve_t