begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 33 | Segment [0] from curve 56 | 660 samples [1733..2392] | 0.084 of the curve [0.221__0.304] | Segment [1] from curve 57 (reversed) | 533 samples [1060..1592] | 0.091 of the curve [0.182__0.273] | Candidate after realignment and trimming: | Candidate index = 33 | Segment [0] from curve 56 | 513 samples [1806..2318] | 0.065 of the curve [0.230__0.295] | Segment [1] from curve 57 (reversed) | 513 samples [1070..1582] | 0.088 of the curve [0.184__0.271] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 3 -3 0 5 -6 0 8 -9 0 11 -11 0 15 -14 0 18 -16 0 21 -18 0 25 -19 0 29 -20 0 33 -21 0 37 -22 0 41 -22 0 45 -22 0 49 -21 0 53 -20 0 57 -19 0 60 -18 0 64 -17 0 68 -15 0 71 -13 0 75 -12 0 79 -10 0 82 -9 0 86 -7 0 90 -6 0 94 -5 0 98 -4 0 102 -3 0 106 -2 0 110 -2 0 113 -1 0 117 -1 0 121 -1 0 125 -1 0 129 -1 0 133 -1 0 137 -1 0 141 0 0 145 0 0 149 1 0 153 1 0 157 3 0 161 4 0 164 6 0 168 8 0 171 11 0 174 13 0 176 16 0 179 19 0 182 22 0 184 25 0 187 28 0 190 31 0 193 34 0 196 37 0 199 39 0 202 41 0 206 43 0 209 45 0 213 47 0 216 49 0 220 50 0 224 51 0 228 52 0 232 53 0 236 53 0 240 54 0 244 54 0 248 55 0 252 55 0 256 55 0 260 56 0 264 56 0 268 56 0 272 57 0 276 57 0 280 58 0 284 58 0 288 59 0 291 59 0 295 59 0 299 60 0 303 60 0 307 60 0 311 60 0 315 60 0 319 59 0 323 59 0 327 58 0 331 58 0 335 57 0 339 57 0 343 56 0 347 56 0 351 55 0 355 55 0 359 55 0 363 55 0 367 55 0 371 55 0 375 55 0 379 56 0 383 57 0 387 57 0 391 58 0 395 60 0 398 61 0 402 63 0 406 64 0 409 66 0 413 68 0 417 70 0 420 71 0 424 73 0 428 74 0 431 75 0 435 77 0 439 78 0 443 79 0 447 80 0 451 80 0 455 81 0 459 82 0 462 83 0 466 84 0 470 85 0 474 86 0 478 86 0 482 87 0 486 88 0 490 89 0 494 90 0 497 92 0 501 93 0 505 94 0 509 96 0 512 97 0 516 99 0 520 101 0 523 102 0 527 104 0 530 106 0 534 107 0 538 109 0 542 110 0 545 111 0 549 113 0 553 114 0 557 115 0 561 116 0 565 117 0 568 118 0 572 120 0 576 121 0 580 122 0 584 123 0 587 125 0 591 126 0 595 127 0 599 128 0 603 129 0 607 129 0 611 130 0 615 131 0 619 131 0 623 131 0 627 132 0 631 132 0 635 133 0 639 133 0 643 133 0 647 133 0 651 134 0 655 134 0 659 134 0 663 134 0 667 135 0 671 135 0 675 135 0 679 136 0 682 136 0 686 136 0 690 137 0 694 137 0 698 137 0 702 138 0 706 138 0 710 138 0 714 138 0 718 138 0 722 137 0 726 137 0 730 137 0 734 136 0 738 135 0 742 134 0 746 133 0 750 132 0 754 131 0 757 130 0 761 128 0 765 127 0 769 126 0 772 124 0 776 123 0 780 122 0 784 120 0 787 119 0 791 117 0 795 116 0 799 115 0 803 114 0 807 113 0 810 112 0 814 111 0 818 111 0 822 110 0 826 110 0 830 110 0 834 109 0 838 109 0 842 109 0 846 109 0 850 109 0 854 110 0 858 110 0 862 111 0 866 112 0 870 113 0 874 114 0 878 115 0 882 116 0 885 117 0 889 118 0 893 119 0 897 119 0 901 120 0 905 120 0 909 121 0 913 121 0 917 122 0 921 122 0 925 122 0 929 123 0 933 123 0 937 124 0 941 125 0 945 126 0 949 127 0 953 128 0 956 128 0 960 129 0 964 130 0 968 131 0 972 131 0 976 132 0 980 132 0 984 133 0 988 133 0 992 133 0 996 133 0 1000 133 0 1004 132 0 1008 132 0 1012 131 0 1016 131 0 1020 130 0 1024 128 0 1027 127 0 1031 126 0 1035 124 0 1038 122 0 1042 121 0 1045 119 0 1049 117 0 1053 115 0 1057 114 0 1060 113 0 1064 112 0 1068 111 0 1072 111 0 1076 111 0 1080 111 0 1084 111 0 1088 111 0 1092 111 0 1096 111 0 1100 110 0 1104 109 0 1108 108 0 1111 106 0 1115 104 0 1118 102 0 1122 100 0 1125 97 0 1128 95 0 1130 92 0 1133 88 0 1135 85 0 1137 82 0 1139 78 0 1141 75 0 1143 71 0 1146 68 0 1148 65 0 1150 62 0 1153 59 0 1156 57 0 1160 54 0 1163 53 0 1167 51 0 1171 50 0 1175 49 0 1179 48 0 1183 48 0 1187 48 0 1191 47 0 1195 47 0 1199 46 0 1203 46 0 1206 45 0 1210 44 0 1214 43 0 1218 42 0 1222 41 0 1226 40 0 1229 38 0 1233 37 0 1237 35 0 1241 34 0 1244 32 0 1248 31 0 1252 29 0 1255 28 0 1259 26 0 1263 25 0 1267 24 0 1270 22 0 1274 21 0 1278 20 0 1282 19 0 1286 18 0 1290 17 0 1294 17 0 1298 17 0 1302 17 0 1306 17 0 1310 17 0 1314 18 0 1318 18 0 1322 19 0 1326 19 0 1330 20 0 1334 20 0 1338 21 0 1342 21 0 1345 22 0 1349 22 0 1353 22 0 1357 23 0 1361 23 0 1365 24 0 1369 24 0 1373 24 0 1377 25 0 1381 25 0 1385 26 0 1389 27 0 1393 29 0 1396 30 0 1400 32 0 1403 35 0 1406 37 0 1409 40 0 1412 43 0 1415 45 0 1418 48 0 1420 51 0 1423 54 0 1426 57 0 1429 59 0 1433 61 0 1436 64 0 1440 66 0 1443 67 0 1447 69 0 1451 70 0 1454 71 0 1458 73 0 1462 74 0 1466 74 0 1470 75 0 1474 76 0 1478 76 0 1482 77 0 1486 77 0 1490 77 0 1494 77 0 1498 77 0 1502 77 0 1506 77 0 1510 76 0 1514 76 0 1518 76 0 1522 75 0 1526 74 0 1530 74 0 1534 73 0 1538 73 0 1542 72 0 1545 72 0 1549 71 0 1553 71 0 1557 70 0 1561 70 0 1565 69 0 1569 69 0 1573 68 0 1577 68 0 1581 67 0 1585 67 0 1589 67 0 1593 66 0 1597 66 0 1601 66 0 1605 67 0 1609 67 0 1613 67 0 1617 67 0 1621 66 0 1625 66 0 1629 65 0 1633 64 0 1637 62 0 1640 61 0 1644 59 0 1647 57 0 1651 55 0 1655 54 0 1658 52 0 1662 51 0 1666 49 0 1670 48 0 1674 48 0 1677 47 0 1681 46 0 1685 45 0 1689 44 0 1693 44 0 1697 43 0 1701 43 0 1705 42 0 1709 42 0 1713 42 0 1717 42 0 1721 43 0 1725 43 0 1729 43 0 1733 44 0 1737 44 0 1741 45 0 1745 45 0 1749 46 0 1753 46 0 1757 46 0 1761 46 0 1765 46 0 1769 45 0 1773 45 0 1777 44 0 1781 44 0 1785 44 0 1789 44 0 1793 44 0 1797 44 0 1801 45 0 1805 45 0 1809 46 0 1812 48 0 1816 49 0 1820 50 0 1824 51 0 1828 52 0 1832 53 0 1835 54 0 1839 54 0 1843 53 0 1847 53 0 1851 52 0 1855 50 0 1859 48 0 1862 46 0 1865 44 0 1868 41 0 1872 39 0 1875 37 0 1878 35 0 1882 32 0 1885 30 0 1888 28 0 1892 26 0 1895 24 0 1899 22 0 1902 19 0 1905 17 0 1908 15 0 1911 12 0 1914 9 0 1917 7 0 1921 4 0 1924 2 0 1927 0 0 end frb_curve_t