begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 35 | Segment [0] from curve 63 | 800 samples [1487..2286] | 0.099 of the curve [0.184__0.283] | Segment [1] from curve 95 (reversed) | 526 samples [2379..2904] | 0.147 of the curve [0.664__0.811] | Candidate after realignment and trimming: | Candidate index = 35 | Segment [0] from curve 63 | 513 samples [1630..2142] | 0.064 of the curve [0.202__0.265] | Segment [1] from curve 95 (reversed) | 513 samples [2386..2898] | 0.143 of the curve [0.666__0.809] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -2 0 7 -3 0 11 -5 0 14 -8 0 17 -10 0 20 -13 0 23 -15 0 26 -18 0 29 -21 0 32 -24 0 35 -26 0 38 -28 0 42 -31 0 45 -33 0 49 -35 0 52 -36 0 56 -38 0 59 -40 0 63 -41 0 67 -43 0 70 -45 0 74 -46 0 78 -48 0 82 -49 0 85 -51 0 89 -52 0 93 -54 0 96 -55 0 100 -57 0 104 -58 0 108 -59 0 111 -61 0 115 -62 0 119 -63 0 123 -65 0 126 -66 0 130 -67 0 134 -69 0 137 -71 0 141 -72 0 145 -74 0 148 -75 0 152 -77 0 156 -78 0 160 -79 0 164 -80 0 168 -80 0 172 -81 0 176 -82 0 180 -83 0 183 -84 0 187 -85 0 191 -86 0 195 -88 0 199 -89 0 202 -90 0 206 -92 0 210 -93 0 214 -94 0 218 -94 0 222 -95 0 226 -95 0 230 -96 0 234 -96 0 238 -96 0 242 -96 0 246 -96 0 250 -96 0 254 -95 0 258 -95 0 262 -94 0 266 -94 0 269 -93 0 273 -92 0 277 -91 0 281 -90 0 285 -89 0 289 -89 0 293 -88 0 297 -87 0 301 -86 0 305 -86 0 309 -86 0 313 -85 0 317 -85 0 321 -85 0 325 -84 0 329 -84 0 333 -83 0 336 -82 0 340 -82 0 344 -81 0 348 -80 0 352 -78 0 356 -77 0 360 -76 0 363 -74 0 367 -73 0 371 -71 0 374 -70 0 378 -68 0 381 -66 0 385 -64 0 388 -62 0 392 -60 0 395 -58 0 398 -55 0 402 -53 0 405 -51 0 408 -48 0 411 -46 0 414 -43 0 417 -41 0 421 -38 0 424 -36 0 427 -34 0 431 -32 0 434 -30 0 438 -29 0 442 -27 0 445 -25 0 449 -24 0 453 -22 0 456 -20 0 460 -19 0 463 -17 0 467 -15 0 470 -13 0 474 -11 0 478 -9 0 481 -8 0 485 -6 0 489 -5 0 493 -4 0 496 -3 0 500 -3 0 504 -2 0 508 -2 0 512 -2 0 516 -2 0 520 -2 0 524 -2 0 528 -2 0 532 -1 0 536 -1 0 540 -1 0 544 0 0 548 0 0 552 1 0 556 2 0 560 4 0 563 5 0 567 7 0 570 9 0 574 12 0 577 14 0 580 17 0 582 20 0 585 23 0 588 26 0 591 29 0 593 31 0 596 34 0 599 37 0 603 39 0 606 42 0 609 44 0 613 45 0 617 47 0 620 48 0 624 49 0 628 50 0 632 51 0 636 52 0 640 53 0 644 53 0 648 54 0 652 55 0 656 55 0 660 56 0 663 57 0 667 57 0 671 58 0 675 58 0 679 59 0 683 59 0 687 59 0 691 60 0 695 60 0 699 60 0 703 61 0 707 61 0 711 62 0 715 62 0 719 63 0 723 64 0 727 65 0 731 66 0 735 67 0 738 69 0 742 70 0 746 71 0 749 73 0 753 74 0 757 76 0 761 77 0 764 79 0 768 80 0 772 82 0 776 83 0 779 85 0 783 86 0 787 87 0 791 88 0 795 89 0 798 90 0 802 91 0 806 91 0 810 92 0 814 92 0 818 92 0 822 92 0 826 92 0 830 92 0 834 92 0 838 91 0 842 91 0 846 91 0 850 91 0 854 91 0 858 90 0 862 90 0 866 90 0 870 89 0 874 89 0 878 88 0 882 88 0 886 88 0 890 88 0 894 88 0 898 88 0 902 88 0 906 89 0 910 89 0 914 90 0 918 91 0 922 91 0 926 92 0 930 93 0 934 93 0 938 94 0 942 94 0 946 95 0 950 95 0 953 96 0 957 97 0 961 98 0 965 99 0 969 100 0 973 101 0 977 102 0 980 104 0 984 105 0 988 107 0 992 108 0 995 109 0 999 111 0 1003 112 0 1007 113 0 1011 114 0 1015 115 0 1018 116 0 1022 117 0 1026 118 0 1030 118 0 1034 119 0 1038 120 0 1042 121 0 1046 122 0 1050 123 0 1054 124 0 1057 125 0 1061 126 0 1065 128 0 1069 129 0 1072 131 0 1076 132 0 1079 134 0 1083 136 0 1086 138 0 1090 140 0 1093 142 0 1097 144 0 1100 146 0 1104 148 0 1107 150 0 1111 152 0 1114 154 0 1118 156 0 1121 157 0 1125 159 0 1129 161 0 1132 163 0 1136 165 0 1139 167 0 1142 169 0 1146 171 0 1149 174 0 1152 176 0 1156 178 0 1159 181 0 1162 183 0 1165 185 0 1168 188 0 1172 190 0 1175 193 0 1178 195 0 1182 197 0 1185 199 0 1189 200 0 1193 201 0 1197 202 0 1201 203 0 1205 203 0 1208 203 0 1212 202 0 1216 202 0 1220 201 0 1224 200 0 1228 199 0 1232 198 0 1236 197 0 1240 195 0 1243 194 0 1247 193 0 1251 191 0 1255 190 0 1258 189 0 1262 188 0 1266 187 0 1270 186 0 1274 185 0 1278 184 0 1282 184 0 1286 184 0 1290 183 0 1294 183 0 1298 182 0 1302 181 0 1305 180 0 1309 178 0 1312 175 0 1315 172 0 1317 169 0 1320 166 0 1322 163 0 1324 159 0 1326 156 0 1328 153 0 1331 150 0 1334 147 0 1337 144 0 1340 142 0 1344 140 0 1347 139 0 1351 138 0 1355 137 0 1359 137 0 1363 136 0 1367 136 0 1371 135 0 1375 134 0 1379 133 0 1383 132 0 1386 131 0 1390 129 0 1394 127 0 1397 125 0 1400 123 0 1403 120 0 1406 118 0 1409 115 0 1412 112 0 1415 109 0 1417 106 0 1420 103 0 1422 100 0 1425 96 0 1427 93 0 1430 90 0 1433 88 0 1436 85 0 1439 83 0 1443 81 0 1447 80 0 1451 79 0 1455 78 0 1459 78 0 1463 77 0 1467 76 0 1470 76 0 1474 75 0 1478 75 0 1482 74 0 1486 73 0 1490 73 0 1494 72 0 1498 71 0 1502 71 0 1506 70 0 1510 69 0 1514 68 0 1518 67 0 1522 66 0 1525 65 0 1529 64 0 1533 63 0 1537 62 0 1541 61 0 1545 60 0 1549 59 0 1553 59 0 1557 58 0 1561 58 0 1565 58 0 1569 58 0 1573 58 0 1577 58 0 1581 58 0 1585 58 0 1589 58 0 1593 58 0 1597 58 0 1601 57 0 1604 57 0 1608 56 0 1612 56 0 1616 55 0 1620 55 0 1624 55 0 1628 54 0 1632 54 0 1636 54 0 1640 54 0 1644 53 0 1648 53 0 1652 52 0 1656 51 0 1660 51 0 1664 50 0 1668 48 0 1671 47 0 1675 45 0 1679 44 0 1682 42 0 1686 40 0 1689 38 0 1693 36 0 1697 35 0 1701 34 0 1704 32 0 1708 32 0 1712 31 0 1716 31 0 1720 30 0 1724 30 0 1728 30 0 1732 30 0 1736 30 0 1740 30 0 1744 29 0 1748 29 0 1752 28 0 1756 27 0 1760 26 0 1764 25 0 1768 24 0 1772 24 0 1776 24 0 1780 24 0 1784 24 0 1787 25 0 1791 26 0 1795 26 0 1799 27 0 1803 27 0 1807 27 0 1811 27 0 1815 26 0 1819 26 0 1823 24 0 1827 23 0 1830 22 0 1834 20 0 1838 18 0 1841 17 0 1845 15 0 1849 14 0 1852 12 0 1856 11 0 1860 9 0 1864 8 0 1868 7 0 1872 6 0 1875 5 0 1879 4 0 1883 3 0 1887 3 0 1891 2 0 1895 1 0 1899 1 0 1903 0 0 end frb_curve_t