begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 36 | Segment [0] from curve 67 | 600 samples [8235..8834] | 0.065 of the curve [0.893__0.958] | Segment [1] from curve 84 (reversed) | 600 samples [4754..5353] | 0.100 of the curve [0.792__0.891] | Candidate after realignment and trimming: | Candidate index = 36 | Segment [0] from curve 67 | 513 samples [8278..8790] | 0.056 of the curve [0.898__0.953] | Segment [1] from curve 84 (reversed) | 513 samples [4798..5310] | 0.085 of the curve [0.799__0.884] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 0 0 8 0 0 12 -1 0 16 -1 0 20 -1 0 24 -2 0 28 -2 0 32 -3 0 36 -4 0 40 -5 0 44 -5 0 47 -6 0 51 -7 0 55 -8 0 59 -9 0 63 -9 0 67 -10 0 71 -10 0 75 -10 0 79 -10 0 83 -10 0 87 -10 0 91 -10 0 95 -10 0 99 -10 0 103 -9 0 107 -9 0 111 -9 0 115 -9 0 119 -8 0 123 -8 0 127 -7 0 131 -6 0 135 -5 0 138 -3 0 142 -2 0 146 0 0 150 1 0 153 3 0 157 4 0 160 6 0 164 8 0 168 10 0 171 11 0 175 13 0 178 15 0 182 17 0 185 19 0 188 22 0 192 24 0 195 26 0 199 28 0 202 30 0 206 32 0 209 34 0 213 35 0 217 37 0 220 38 0 224 39 0 228 39 0 232 40 0 236 41 0 240 41 0 244 42 0 248 42 0 252 42 0 256 42 0 260 43 0 264 43 0 268 43 0 272 43 0 276 43 0 280 43 0 284 43 0 288 42 0 292 42 0 296 41 0 300 41 0 304 40 0 308 40 0 312 39 0 316 39 0 320 38 0 324 38 0 328 37 0 332 36 0 335 35 0 339 35 0 343 34 0 347 33 0 351 32 0 355 31 0 359 30 0 363 29 0 367 28 0 370 27 0 374 26 0 378 25 0 382 24 0 386 23 0 390 22 0 394 21 0 398 21 0 402 20 0 406 19 0 410 19 0 414 18 0 417 17 0 421 17 0 425 16 0 429 16 0 433 15 0 437 14 0 441 13 0 445 13 0 449 12 0 453 11 0 457 9 0 460 8 0 464 6 0 468 5 0 471 3 0 475 1 0 478 -1 0 482 -3 0 485 -6 0 488 -8 0 491 -10 0 494 -13 0 498 -15 0 501 -18 0 504 -20 0 507 -23 0 510 -25 0 513 -27 0 517 -30 0 520 -32 0 523 -34 0 526 -37 0 530 -39 0 533 -41 0 536 -44 0 540 -46 0 543 -48 0 547 -49 0 550 -51 0 554 -52 0 558 -53 0 562 -54 0 566 -55 0 570 -55 0 574 -55 0 578 -55 0 582 -55 0 586 -55 0 590 -54 0 594 -53 0 598 -52 0 601 -51 0 605 -50 0 609 -49 0 613 -48 0 617 -47 0 621 -46 0 625 -45 0 628 -44 0 632 -43 0 636 -42 0 640 -41 0 644 -41 0 648 -41 0 652 -40 0 656 -40 0 660 -40 0 664 -40 0 668 -41 0 672 -41 0 676 -42 0 680 -42 0 684 -43 0 688 -44 0 692 -44 0 696 -45 0 700 -46 0 704 -47 0 707 -48 0 711 -49 0 715 -50 0 719 -51 0 723 -52 0 727 -53 0 731 -54 0 734 -56 0 738 -57 0 742 -59 0 745 -60 0 749 -62 0 753 -64 0 756 -65 0 760 -67 0 764 -68 0 767 -70 0 771 -71 0 775 -73 0 779 -74 0 782 -76 0 786 -77 0 789 -79 0 793 -81 0 797 -83 0 800 -85 0 803 -87 0 807 -89 0 810 -91 0 814 -93 0 817 -95 0 821 -97 0 824 -99 0 827 -101 0 831 -103 0 834 -105 0 838 -107 0 841 -110 0 845 -112 0 848 -114 0 851 -116 0 855 -118 0 858 -120 0 862 -122 0 865 -124 0 869 -126 0 872 -128 0 876 -129 0 880 -131 0 883 -132 0 887 -133 0 891 -134 0 895 -135 0 899 -136 0 903 -136 0 907 -136 0 911 -136 0 915 -136 0 919 -135 0 923 -135 0 927 -134 0 931 -133 0 935 -132 0 938 -131 0 942 -130 0 946 -129 0 950 -128 0 954 -127 0 958 -126 0 962 -125 0 966 -124 0 969 -123 0 973 -121 0 977 -120 0 980 -118 0 984 -117 0 988 -115 0 991 -113 0 995 -112 0 999 -111 0 1003 -109 0 1007 -108 0 1010 -107 0 1014 -107 0 1018 -106 0 1022 -105 0 1026 -104 0 1030 -104 0 1034 -103 0 1038 -102 0 1042 -101 0 1046 -100 0 1050 -99 0 1053 -98 0 1057 -97 0 1061 -96 0 1065 -95 0 1069 -94 0 1073 -93 0 1077 -92 0 1081 -91 0 1084 -90 0 1088 -88 0 1092 -87 0 1096 -86 0 1099 -84 0 1103 -83 0 1107 -81 0 1111 -80 0 1114 -79 0 1118 -77 0 1122 -76 0 1126 -75 0 1130 -74 0 1133 -73 0 1137 -72 0 1141 -70 0 1145 -69 0 1149 -68 0 1153 -67 0 1156 -66 0 1160 -64 0 1164 -63 0 1168 -61 0 1171 -60 0 1175 -58 0 1179 -56 0 1182 -55 0 1186 -53 0 1190 -52 0 1193 -50 0 1197 -49 0 1201 -47 0 1205 -46 0 1209 -46 0 1213 -45 0 1217 -45 0 1221 -45 0 1225 -45 0 1228 -45 0 1232 -46 0 1236 -47 0 1240 -48 0 1244 -50 0 1248 -51 0 1251 -53 0 1255 -55 0 1258 -56 0 1262 -58 0 1265 -60 0 1269 -62 0 1272 -64 0 1275 -67 0 1279 -69 0 1282 -72 0 1285 -74 0 1288 -77 0 1291 -80 0 1293 -83 0 1296 -86 0 1298 -89 0 1300 -93 0 1302 -96 0 1303 -100 0 1305 -104 0 1307 -107 0 1309 -111 0 1311 -114 0 1313 -117 0 1316 -121 0 1318 -124 0 1321 -126 0 1324 -129 0 1327 -131 0 1331 -133 0 1335 -135 0 1338 -136 0 1342 -137 0 1346 -138 0 1350 -138 0 1354 -138 0 1358 -138 0 1362 -137 0 1366 -137 0 1370 -136 0 1374 -135 0 1378 -133 0 1381 -132 0 1385 -130 0 1388 -128 0 1392 -126 0 1395 -124 0 1399 -122 0 1402 -120 0 1405 -117 0 1409 -115 0 1412 -113 0 1415 -111 0 1418 -108 0 1421 -106 0 1424 -103 0 1427 -100 0 1430 -98 0 1433 -95 0 1436 -92 0 1438 -89 0 1441 -86 0 1443 -82 0 1446 -79 0 1448 -76 0 1450 -73 0 1453 -70 0 1455 -66 0 1458 -63 0 1460 -60 0 1463 -58 0 1466 -55 0 1469 -52 0 1472 -50 0 1475 -47 0 1479 -45 0 1482 -43 0 1485 -41 0 1489 -39 0 1492 -37 0 1496 -35 0 1500 -33 0 1503 -31 0 1507 -30 0 1511 -28 0 1514 -27 0 1518 -26 0 1522 -24 0 1526 -23 0 1529 -21 0 1533 -20 0 1537 -19 0 1541 -18 0 1545 -17 0 1548 -16 0 1552 -15 0 1556 -14 0 1560 -13 0 1564 -12 0 1568 -12 0 1572 -11 0 1576 -10 0 1580 -9 0 1584 -8 0 1588 -7 0 1591 -6 0 1595 -5 0 1599 -3 0 1603 -2 0 1606 -1 0 1610 1 0 1614 1 0 1618 2 0 1622 3 0 1626 3 0 1630 4 0 1634 4 0 1638 3 0 1642 3 0 1646 3 0 1650 2 0 1654 1 0 1658 0 0 1662 -1 0 1665 -2 0 1669 -3 0 1673 -4 0 1677 -5 0 1681 -6 0 1685 -7 0 1689 -8 0 1693 -9 0 1696 -10 0 1700 -11 0 1704 -12 0 1708 -13 0 1712 -14 0 1716 -15 0 1719 -16 0 1723 -18 0 1727 -19 0 1731 -21 0 1734 -22 0 1738 -23 0 1742 -25 0 1746 -26 0 1750 -27 0 1753 -28 0 1757 -30 0 1761 -31 0 1765 -32 0 1769 -32 0 1773 -33 0 1777 -34 0 1781 -35 0 1785 -35 0 1789 -36 0 1793 -36 0 1797 -36 0 1801 -36 0 1805 -36 0 1808 -36 0 1812 -35 0 1816 -34 0 1820 -33 0 1824 -31 0 1827 -29 0 1831 -28 0 1834 -26 0 1838 -23 0 1841 -21 0 1844 -19 0 1848 -17 0 1851 -14 0 1854 -12 0 1858 -10 0 1861 -8 0 1864 -6 0 1868 -4 0 1872 -2 0 1875 -1 0 1879 0 0 end frb_curve_t