begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-02 00:20:33 by stolfi | | False candidates | Generated from ../../std/s/raw.can by swapping segments | between candidates. | | | frb_analyze | maxShift = 0.000 pixels | nSamples = 513 | | Input candidate: | Candidate index = 41 | Segment [0] from curve 81 | 600 samples [3576..4175] | 0.138 of the curve [0.821__0.958] | Segment [1] from curve 100 (reversed) | 600 samples [6456..7055] | 0.076 of the curve [0.814__0.889] | Candidate after realignment and trimming: | Candidate index = 41 | Segment [0] from curve 81 | 513 samples [3619..4131] | 0.118 of the curve [0.831__0.948] | Segment [1] from curve 100 (reversed) | 513 samples [6500..7012] | 0.065 of the curve [0.819__0.884] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -2 0 7 -4 0 11 -6 0 14 -8 0 17 -10 0 21 -12 0 24 -14 0 27 -16 0 31 -18 0 35 -20 0 38 -22 0 42 -23 0 46 -25 0 49 -26 0 53 -28 0 57 -30 0 60 -31 0 64 -33 0 67 -35 0 70 -38 0 74 -40 0 77 -42 0 81 -44 0 84 -46 0 88 -47 0 92 -49 0 95 -50 0 99 -51 0 103 -51 0 107 -52 0 111 -52 0 115 -51 0 119 -51 0 123 -50 0 127 -50 0 131 -49 0 135 -49 0 139 -49 0 143 -49 0 147 -49 0 151 -49 0 155 -50 0 159 -50 0 163 -51 0 167 -52 0 171 -53 0 175 -54 0 178 -55 0 182 -56 0 186 -57 0 190 -57 0 194 -58 0 198 -58 0 202 -58 0 206 -58 0 210 -59 0 214 -59 0 218 -59 0 222 -59 0 226 -59 0 230 -59 0 234 -59 0 238 -59 0 242 -59 0 246 -59 0 250 -59 0 254 -59 0 258 -60 0 262 -60 0 266 -61 0 270 -62 0 274 -63 0 278 -64 0 281 -65 0 285 -66 0 289 -68 0 293 -69 0 297 -70 0 300 -71 0 304 -72 0 308 -73 0 312 -74 0 316 -75 0 320 -76 0 324 -77 0 328 -78 0 331 -79 0 335 -80 0 339 -82 0 343 -83 0 346 -85 0 350 -87 0 353 -89 0 357 -90 0 361 -92 0 364 -94 0 368 -96 0 371 -97 0 375 -99 0 379 -100 0 383 -102 0 386 -103 0 390 -104 0 394 -105 0 398 -107 0 402 -108 0 405 -110 0 409 -111 0 413 -113 0 416 -114 0 420 -116 0 424 -118 0 427 -119 0 431 -121 0 435 -122 0 438 -124 0 442 -125 0 446 -126 0 450 -127 0 454 -128 0 458 -129 0 462 -129 0 466 -130 0 470 -131 0 474 -131 0 477 -132 0 481 -133 0 485 -134 0 489 -135 0 493 -136 0 497 -137 0 500 -139 0 504 -140 0 508 -142 0 512 -143 0 515 -145 0 519 -147 0 522 -148 0 526 -150 0 530 -152 0 533 -154 0 537 -155 0 540 -157 0 544 -159 0 548 -160 0 551 -162 0 555 -163 0 559 -164 0 563 -165 0 567 -166 0 571 -167 0 575 -168 0 579 -168 0 583 -168 0 587 -168 0 591 -168 0 595 -167 0 599 -167 0 603 -166 0 607 -166 0 610 -165 0 614 -164 0 618 -163 0 622 -162 0 626 -162 0 630 -161 0 634 -161 0 638 -161 0 642 -162 0 646 -163 0 650 -164 0 654 -165 0 657 -166 0 661 -168 0 664 -170 0 668 -173 0 671 -175 0 674 -178 0 677 -181 0 680 -183 0 682 -186 0 685 -189 0 688 -192 0 691 -194 0 694 -197 0 697 -200 0 700 -202 0 703 -205 0 706 -207 0 710 -210 0 713 -212 0 717 -213 0 720 -215 0 724 -216 0 728 -217 0 732 -218 0 736 -219 0 740 -219 0 744 -220 0 748 -220 0 752 -219 0 756 -219 0 760 -219 0 764 -218 0 768 -218 0 772 -217 0 776 -217 0 780 -217 0 784 -216 0 788 -216 0 792 -216 0 796 -217 0 800 -217 0 804 -217 0 808 -218 0 811 -219 0 815 -219 0 819 -220 0 823 -220 0 827 -220 0 831 -221 0 835 -221 0 839 -221 0 843 -221 0 847 -220 0 851 -219 0 855 -219 0 859 -218 0 863 -217 0 867 -215 0 871 -214 0 874 -213 0 878 -212 0 882 -210 0 886 -209 0 890 -208 0 893 -207 0 897 -206 0 901 -204 0 905 -203 0 909 -202 0 912 -201 0 916 -199 0 920 -198 0 924 -197 0 928 -196 0 931 -195 0 935 -194 0 939 -193 0 943 -192 0 947 -191 0 951 -191 0 955 -190 0 959 -189 0 963 -188 0 967 -187 0 971 -186 0 974 -185 0 978 -183 0 982 -181 0 985 -180 0 988 -177 0 992 -175 0 995 -173 0 998 -170 0 1001 -167 0 1004 -165 0 1007 -162 0 1009 -159 0 1012 -156 0 1014 -153 0 1017 -150 0 1020 -147 0 1022 -143 0 1025 -140 0 1027 -137 0 1030 -135 0 1033 -132 0 1036 -129 0 1038 -126 0 1041 -123 0 1044 -120 0 1046 -117 0 1049 -114 0 1051 -111 0 1054 -108 0 1057 -105 0 1060 -102 0 1063 -100 0 1067 -98 0 1070 -96 0 1074 -95 0 1078 -94 0 1082 -94 0 1086 -94 0 1090 -94 0 1094 -94 0 1098 -94 0 1102 -95 0 1106 -95 0 1110 -95 0 1114 -95 0 1118 -96 0 1122 -96 0 1126 -97 0 1130 -97 0 1134 -98 0 1138 -99 0 1142 -100 0 1145 -101 0 1149 -103 0 1153 -105 0 1156 -107 0 1160 -108 0 1163 -110 0 1167 -112 0 1171 -113 0 1175 -114 0 1179 -115 0 1183 -115 0 1187 -115 0 1191 -115 0 1195 -115 0 1199 -114 0 1203 -114 0 1206 -113 0 1210 -112 0 1214 -111 0 1218 -110 0 1222 -108 0 1226 -107 0 1229 -106 0 1233 -105 0 1237 -104 0 1241 -103 0 1245 -102 0 1249 -102 0 1253 -101 0 1257 -101 0 1261 -101 0 1265 -102 0 1269 -102 0 1273 -102 0 1277 -103 0 1281 -103 0 1285 -103 0 1289 -103 0 1293 -104 0 1297 -104 0 1301 -105 0 1305 -105 0 1309 -106 0 1313 -107 0 1317 -107 0 1320 -108 0 1324 -109 0 1328 -110 0 1332 -110 0 1336 -111 0 1340 -111 0 1344 -112 0 1348 -112 0 1352 -112 0 1356 -112 0 1360 -112 0 1364 -111 0 1368 -110 0 1372 -109 0 1376 -108 0 1379 -107 0 1383 -105 0 1387 -104 0 1390 -102 0 1394 -100 0 1397 -98 0 1401 -96 0 1404 -93 0 1407 -91 0 1410 -89 0 1414 -86 0 1417 -84 0 1420 -82 0 1424 -80 0 1427 -78 0 1431 -76 0 1434 -74 0 1438 -73 0 1442 -72 0 1446 -71 0 1450 -70 0 1454 -70 0 1458 -69 0 1462 -69 0 1466 -69 0 1470 -68 0 1474 -68 0 1477 -67 0 1481 -66 0 1485 -65 0 1489 -64 0 1493 -62 0 1497 -61 0 1500 -59 0 1504 -58 0 1508 -56 0 1511 -55 0 1515 -54 0 1519 -52 0 1523 -51 0 1526 -50 0 1530 -48 0 1534 -47 0 1538 -45 0 1541 -44 0 1545 -42 0 1549 -41 0 1552 -39 0 1556 -37 0 1560 -36 0 1563 -34 0 1567 -33 0 1571 -32 0 1575 -31 0 1579 -30 0 1583 -30 0 1587 -30 0 1591 -30 0 1595 -30 0 1599 -30 0 1603 -30 0 1607 -30 0 1611 -30 0 1615 -30 0 1619 -30 0 1623 -29 0 1627 -29 0 1631 -29 0 1635 -29 0 1639 -28 0 1643 -28 0 1647 -28 0 1651 -28 0 1655 -28 0 1659 -29 0 1663 -29 0 1667 -30 0 1670 -31 0 1674 -32 0 1678 -33 0 1682 -33 0 1686 -34 0 1690 -35 0 1694 -36 0 1698 -36 0 1702 -37 0 1706 -37 0 1710 -37 0 1714 -37 0 1718 -37 0 1722 -37 0 1726 -36 0 1730 -36 0 1734 -35 0 1737 -34 0 1741 -32 0 1745 -31 0 1749 -29 0 1752 -27 0 1756 -25 0 1759 -23 0 1762 -21 0 1766 -19 0 1769 -17 0 1772 -14 0 1776 -12 0 1779 -10 0 1782 -8 0 1786 -5 0 1789 -3 0 1792 -1 0 1796 1 0 1799 3 0 1803 5 0 1807 6 0 1810 8 0 1814 9 0 1818 10 0 1822 11 0 1826 11 0 1830 12 0 1834 12 0 1838 12 0 1842 11 0 1846 11 0 1850 10 0 1854 9 0 1858 8 0 1861 7 0 1865 7 0 1869 6 0 1873 5 0 1877 4 0 1881 4 0 1885 4 0 1889 3 0 1893 3 0 1897 3 0 1901 2 0 1905 2 0 1909 1 0 1913 1 0 1917 0 0 end frb_curve_t