begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-01 23:36:33 by stolfi | | True and recognizable candidates | Essentially entered by hand | Some of them refined with PZRefineCands | | | frb_analyze | maxShift = 0.847 pixels | nSamples = 513 | | Input candidate: | Candidate index = 28 | Segment [0] from curve 20 | 726 samples [2808..3533] | 0.152 of the curve [0.589__0.741] | Segment [1] from curve 40 (reversed) | 718 samples [ 901..1618] | 0.149 of the curve [0.187__0.336] | Candidate after realignment and trimming: | Candidate index = 28 | Segment [0] from curve 20 | 513 samples [3003..3515] | 0.108 of the curve [0.630__0.738] | Segment [1] from curve 40 (reversed) | 513 samples [ 916..1428] | 0.107 of the curve [0.190__0.297] | | | side = "a" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 4 -1 0 8 -1 0 12 -1 0 16 0 0 20 1 0 23 2 0 27 4 0 31 5 0 34 7 0 38 9 0 41 11 0 45 13 0 48 15 0 52 17 0 55 18 0 59 20 0 63 22 0 66 24 0 70 26 0 73 28 0 76 30 0 80 32 0 83 34 0 87 36 0 90 38 0 94 40 0 97 42 0 101 44 0 104 46 0 108 47 0 112 49 0 115 51 0 119 52 0 123 53 0 127 54 0 131 55 0 135 55 0 139 56 0 143 56 0 147 56 0 151 56 0 155 56 0 159 55 0 163 55 0 166 54 0 170 53 0 174 52 0 178 51 0 182 50 0 186 49 0 190 48 0 194 47 0 197 46 0 201 45 0 205 43 0 209 42 0 213 41 0 216 40 0 220 39 0 224 38 0 228 37 0 232 36 0 236 36 0 240 36 0 244 36 0 248 36 0 252 37 0 256 38 0 260 39 0 264 40 0 267 41 0 271 42 0 275 44 0 279 45 0 282 46 0 286 48 0 290 49 0 294 50 0 298 51 0 302 53 0 305 54 0 309 55 0 313 57 0 316 59 0 320 61 0 323 63 0 327 65 0 330 67 0 333 69 0 336 72 0 339 74 0 343 77 0 346 79 0 349 82 0 352 84 0 355 87 0 358 90 0 361 92 0 364 95 0 367 98 0 370 100 0 373 103 0 376 106 0 379 108 0 382 110 0 386 112 0 389 114 0 393 115 0 397 116 0 401 116 0 405 117 0 409 116 0 413 116 0 417 116 0 421 115 0 425 114 0 429 113 0 433 112 0 437 112 0 441 111 0 444 110 0 448 108 0 452 107 0 456 106 0 460 104 0 463 103 0 467 101 0 470 99 0 474 97 0 477 95 0 480 93 0 484 90 0 487 88 0 490 85 0 493 83 0 496 81 0 500 79 0 503 77 0 507 75 0 510 73 0 514 71 0 518 70 0 522 69 0 525 67 0 529 66 0 533 65 0 537 64 0 541 63 0 545 62 0 549 61 0 553 61 0 556 60 0 560 59 0 564 58 0 568 58 0 572 57 0 576 56 0 580 55 0 584 54 0 588 53 0 591 51 0 595 50 0 599 48 0 602 46 0 606 44 0 609 42 0 612 40 0 615 37 0 619 35 0 622 33 0 625 30 0 629 28 0 632 26 0 635 24 0 639 22 0 643 21 0 647 20 0 650 18 0 654 18 0 658 17 0 662 17 0 666 16 0 670 16 0 674 16 0 678 16 0 682 16 0 686 16 0 690 16 0 694 17 0 698 17 0 702 17 0 706 17 0 710 17 0 714 17 0 718 17 0 722 17 0 726 17 0 730 17 0 734 17 0 738 17 0 742 17 0 746 17 0 750 18 0 754 18 0 758 19 0 762 20 0 766 20 0 770 21 0 774 22 0 778 23 0 781 24 0 785 25 0 789 26 0 793 27 0 797 28 0 801 28 0 805 29 0 809 30 0 813 30 0 817 31 0 821 31 0 825 31 0 829 32 0 833 32 0 837 32 0 841 32 0 845 33 0 849 33 0 853 33 0 857 33 0 861 33 0 865 33 0 869 33 0 873 33 0 877 32 0 881 33 0 885 33 0 889 33 0 893 34 0 897 34 0 901 35 0 904 36 0 908 38 0 912 39 0 915 41 0 919 43 0 923 44 0 926 46 0 930 48 0 933 50 0 937 52 0 940 54 0 944 56 0 947 58 0 951 59 0 954 61 0 958 62 0 962 63 0 966 64 0 970 65 0 974 66 0 978 66 0 982 67 0 986 67 0 990 68 0 994 69 0 998 69 0 1002 70 0 1006 70 0 1010 71 0 1014 71 0 1018 71 0 1021 71 0 1025 70 0 1029 70 0 1033 69 0 1037 68 0 1041 67 0 1045 66 0 1049 66 0 1053 65 0 1057 65 0 1061 66 0 1065 67 0 1069 68 0 1072 70 0 1076 72 0 1079 74 0 1082 77 0 1085 80 0 1087 83 0 1089 86 0 1092 89 0 1094 93 0 1096 96 0 1098 99 0 1101 102 0 1104 105 0 1107 107 0 1111 109 0 1114 111 0 1118 112 0 1122 114 0 1126 114 0 1130 115 0 1134 115 0 1138 115 0 1142 115 0 1146 114 0 1150 114 0 1154 113 0 1158 112 0 1161 111 0 1165 110 0 1169 109 0 1173 108 0 1177 107 0 1181 106 0 1184 105 0 1188 103 0 1192 102 0 1196 100 0 1199 99 0 1203 97 0 1206 94 0 1209 92 0 1212 90 0 1216 87 0 1219 85 0 1222 82 0 1225 79 0 1228 77 0 1231 74 0 1235 73 0 1238 71 0 1242 70 0 1246 69 0 1250 69 0 1254 68 0 1258 69 0 1262 69 0 1266 69 0 1270 69 0 1274 69 0 1278 69 0 1282 69 0 1286 68 0 1290 67 0 1293 66 0 1297 64 0 1301 63 0 1304 61 0 1308 60 0 1312 58 0 1316 57 0 1319 55 0 1323 54 0 1327 53 0 1331 52 0 1335 51 0 1339 50 0 1342 49 0 1346 47 0 1350 46 0 1354 45 0 1358 44 0 1362 43 0 1365 41 0 1369 40 0 1373 39 0 1377 38 0 1380 36 0 1384 35 0 1388 34 0 1392 33 0 1396 31 0 1400 30 0 1403 29 0 1407 27 0 1411 26 0 1415 25 0 1418 23 0 1422 22 0 1426 20 0 1429 18 0 1433 16 0 1436 14 0 1439 12 0 1443 10 0 1446 7 0 1449 5 0 1452 3 0 1456 0 0 1459 -2 0 1462 -4 0 1466 -7 0 1469 -9 0 1472 -11 0 1476 -13 0 1479 -14 0 1483 -16 0 1487 -18 0 1490 -19 0 1494 -21 0 1498 -22 0 1502 -23 0 1505 -25 0 1509 -26 0 1513 -27 0 1517 -28 0 1521 -28 0 1525 -29 0 1529 -30 0 1533 -31 0 1537 -32 0 1540 -33 0 1544 -34 0 1548 -35 0 1552 -36 0 1556 -36 0 1560 -37 0 1564 -38 0 1568 -39 0 1572 -40 0 1576 -40 0 1580 -41 0 1584 -42 0 1588 -42 0 1592 -43 0 1595 -43 0 1599 -44 0 1603 -45 0 1607 -45 0 1611 -46 0 1615 -47 0 1619 -47 0 1623 -48 0 1627 -49 0 1631 -49 0 1635 -50 0 1639 -51 0 1643 -51 0 1647 -51 0 1651 -52 0 1655 -52 0 1659 -51 0 1663 -51 0 1667 -51 0 1671 -50 0 1675 -50 0 1679 -49 0 1683 -49 0 1687 -49 0 1691 -49 0 1695 -49 0 1699 -50 0 1703 -51 0 1707 -51 0 1710 -52 0 1714 -52 0 1718 -53 0 1722 -53 0 1726 -54 0 1730 -54 0 1734 -54 0 1738 -54 0 1742 -54 0 1746 -55 0 1750 -55 0 1754 -55 0 1758 -55 0 1762 -56 0 1766 -56 0 1770 -56 0 1774 -56 0 1778 -56 0 1782 -56 0 1786 -55 0 1790 -54 0 1794 -53 0 1797 -51 0 1801 -49 0 1804 -47 0 1807 -44 0 1810 -42 0 1813 -39 0 1816 -36 0 1819 -33 0 1822 -30 0 1825 -28 0 1828 -25 0 1831 -23 0 1834 -21 0 1838 -19 0 1842 -17 0 1845 -16 0 1849 -15 0 1853 -13 0 1857 -12 0 1861 -11 0 1865 -11 0 1869 -10 0 1872 -9 0 1876 -8 0 1880 -7 0 1884 -6 0 1888 -5 0 1892 -4 0 1896 -3 0 1900 -2 0 1903 -1 0 1907 0 0 end frb_curve_t