begin frb_curve_t (format of 2004-04-30) | Input candidate set: | Last edited on 2005-01-01 23:36:33 by stolfi | | True and recognizable candidates | Essentially entered by hand | Some of them refined with PZRefineCands | | | frb_analyze | maxShift = 0.847 pixels | nSamples = 513 | | Input candidate: | Candidate index = 28 | Segment [0] from curve 20 | 726 samples [2808..3533] | 0.152 of the curve [0.589__0.741] | Segment [1] from curve 40 (reversed) | 718 samples [ 901..1618] | 0.149 of the curve [0.187__0.336] | Candidate after realignment and trimming: | Candidate index = 28 | Segment [0] from curve 20 | 513 samples [3003..3515] | 0.108 of the curve [0.630__0.738] | Segment [1] from curve 40 (reversed) | 513 samples [ 916..1428] | 0.107 of the curve [0.190__0.297] | | | side = "b" | | converted to shape function unit = 0.00529167 samples = 513 0 0 0 2 4 0 3 7 0 4 11 0 6 15 0 8 18 0 11 21 0 14 24 0 17 26 0 21 28 0 24 30 0 28 31 0 32 32 0 36 34 0 39 35 0 43 37 0 46 39 0 50 41 0 53 43 0 56 46 0 60 48 0 64 49 0 67 50 0 71 51 0 75 51 0 79 51 0 83 50 0 87 49 0 91 47 0 94 45 0 98 43 0 101 41 0 105 40 0 109 38 0 112 36 0 116 35 0 120 34 0 124 33 0 127 32 0 131 31 0 135 30 0 139 29 0 143 28 0 147 26 0 151 25 0 154 24 0 158 23 0 162 21 0 166 20 0 170 19 0 173 18 0 177 17 0 181 16 0 185 15 0 189 15 0 193 14 0 197 14 0 201 14 0 205 14 0 209 14 0 213 14 0 217 15 0 221 15 0 225 16 0 229 18 0 232 19 0 236 21 0 240 23 0 243 25 0 246 27 0 250 29 0 253 31 0 256 34 0 260 36 0 263 38 0 266 40 0 270 42 0 273 44 0 277 46 0 280 47 0 284 49 0 288 51 0 291 53 0 295 55 0 298 57 0 302 59 0 305 61 0 308 63 0 312 65 0 315 67 0 318 70 0 322 72 0 325 74 0 328 76 0 332 78 0 335 81 0 338 83 0 342 85 0 345 87 0 349 89 0 352 91 0 356 93 0 359 94 0 363 96 0 367 97 0 371 98 0 375 98 0 379 98 0 383 98 0 387 98 0 391 98 0 395 97 0 399 96 0 403 96 0 407 95 0 411 94 0 414 93 0 418 92 0 422 91 0 426 90 0 430 89 0 434 87 0 437 86 0 441 84 0 445 83 0 448 81 0 452 79 0 455 77 0 459 75 0 462 73 0 465 71 0 469 69 0 472 67 0 476 65 0 479 63 0 483 61 0 486 59 0 490 58 0 494 56 0 498 55 0 501 54 0 505 52 0 509 51 0 513 50 0 517 49 0 521 49 0 525 48 0 529 47 0 533 47 0 537 46 0 541 46 0 545 46 0 549 46 0 553 46 0 557 46 0 561 46 0 565 46 0 569 46 0 573 46 0 577 45 0 580 45 0 584 44 0 588 43 0 592 41 0 596 39 0 599 37 0 602 35 0 605 32 0 608 29 0 611 27 0 614 24 0 616 21 0 619 18 0 622 15 0 625 12 0 628 10 0 631 8 0 635 5 0 638 4 0 642 2 0 646 1 0 650 0 0 654 -1 0 658 -1 0 662 -1 0 666 -1 0 670 -1 0 674 -1 0 678 -1 0 682 -1 0 686 -1 0 690 0 0 694 0 0 697 0 0 701 1 0 705 2 0 709 2 0 713 3 0 717 3 0 721 4 0 725 5 0 729 5 0 733 6 0 737 6 0 741 7 0 745 7 0 749 8 0 753 8 0 757 9 0 761 9 0 765 10 0 769 11 0 773 11 0 777 12 0 781 13 0 784 14 0 788 15 0 792 16 0 796 17 0 800 18 0 804 19 0 808 20 0 812 21 0 816 22 0 819 22 0 823 23 0 827 23 0 831 24 0 835 24 0 839 24 0 843 24 0 847 24 0 851 24 0 855 24 0 859 24 0 863 24 0 867 24 0 871 24 0 875 25 0 879 25 0 883 26 0 887 27 0 891 29 0 895 30 0 898 31 0 902 33 0 905 35 0 909 37 0 912 39 0 916 41 0 919 43 0 922 46 0 926 48 0 929 50 0 932 52 0 936 54 0 939 56 0 943 59 0 946 60 0 950 62 0 953 64 0 957 66 0 961 67 0 964 69 0 968 70 0 972 71 0 976 72 0 980 73 0 983 74 0 987 75 0 991 75 0 995 75 0 999 74 0 1003 74 0 1007 73 0 1011 72 0 1015 71 0 1019 70 0 1023 68 0 1026 67 0 1030 66 0 1034 65 0 1038 65 0 1042 64 0 1046 64 0 1050 64 0 1054 65 0 1058 66 0 1062 66 0 1066 67 0 1070 69 0 1073 70 0 1077 71 0 1081 73 0 1085 74 0 1088 76 0 1092 78 0 1095 79 0 1099 81 0 1102 83 0 1106 85 0 1109 88 0 1112 90 0 1116 92 0 1119 95 0 1122 97 0 1125 99 0 1129 102 0 1132 104 0 1136 105 0 1139 107 0 1143 108 0 1147 109 0 1151 109 0 1155 109 0 1159 109 0 1163 108 0 1167 107 0 1170 105 0 1174 103 0 1177 101 0 1181 99 0 1184 96 0 1187 94 0 1190 91 0 1192 88 0 1195 85 0 1198 83 0 1202 80 0 1205 78 0 1208 76 0 1212 74 0 1215 72 0 1219 71 0 1223 70 0 1227 70 0 1231 70 0 1235 70 0 1239 70 0 1243 70 0 1247 70 0 1251 70 0 1255 70 0 1259 70 0 1263 69 0 1267 68 0 1271 67 0 1275 66 0 1278 65 0 1282 63 0 1286 61 0 1289 60 0 1293 58 0 1296 56 0 1300 55 0 1304 53 0 1308 52 0 1311 50 0 1315 49 0 1319 48 0 1323 46 0 1326 45 0 1330 43 0 1334 42 0 1337 40 0 1341 38 0 1345 37 0 1348 35 0 1352 34 0 1356 32 0 1359 31 0 1363 29 0 1367 28 0 1371 27 0 1375 26 0 1378 25 0 1382 24 0 1386 23 0 1390 21 0 1394 20 0 1398 19 0 1402 18 0 1405 17 0 1409 15 0 1413 13 0 1416 11 0 1420 9 0 1423 7 0 1426 5 0 1430 3 0 1433 0 0 1436 -2 0 1439 -4 0 1442 -7 0 1446 -9 0 1449 -11 0 1452 -14 0 1456 -16 0 1459 -18 0 1463 -20 0 1466 -21 0 1470 -23 0 1474 -24 0 1477 -26 0 1481 -27 0 1485 -28 0 1489 -29 0 1493 -29 0 1497 -30 0 1501 -30 0 1505 -30 0 1509 -30 0 1513 -30 0 1517 -30 0 1521 -30 0 1525 -31 0 1529 -31 0 1533 -31 0 1537 -32 0 1541 -33 0 1545 -33 0 1549 -34 0 1553 -34 0 1557 -35 0 1561 -35 0 1565 -36 0 1569 -36 0 1573 -37 0 1577 -37 0 1581 -37 0 1585 -38 0 1589 -38 0 1592 -39 0 1596 -39 0 1600 -40 0 1604 -41 0 1608 -42 0 1612 -43 0 1616 -44 0 1620 -45 0 1624 -46 0 1627 -47 0 1631 -49 0 1635 -50 0 1639 -52 0 1642 -53 0 1646 -55 0 1650 -56 0 1654 -57 0 1658 -58 0 1662 -59 0 1665 -59 0 1669 -59 0 1673 -59 0 1677 -59 0 1681 -59 0 1685 -58 0 1689 -58 0 1693 -58 0 1697 -57 0 1701 -57 0 1705 -57 0 1709 -57 0 1713 -57 0 1717 -56 0 1721 -56 0 1725 -56 0 1729 -56 0 1733 -56 0 1737 -55 0 1741 -55 0 1745 -54 0 1749 -53 0 1753 -53 0 1757 -51 0 1761 -50 0 1764 -49 0 1768 -47 0 1772 -45 0 1775 -43 0 1778 -41 0 1782 -39 0 1785 -36 0 1788 -34 0 1791 -32 0 1795 -29 0 1798 -27 0 1801 -24 0 1804 -22 0 1808 -20 0 1811 -18 0 1815 -17 0 1819 -15 0 1822 -14 0 1826 -12 0 1830 -11 0 1834 -10 0 1838 -9 0 1842 -9 0 1846 -8 0 1850 -8 0 1854 -8 0 1858 -7 0 1862 -7 0 1866 -7 0 1870 -6 0 1874 -6 0 1878 -5 0 1882 -5 0 1885 -4 0 1889 -3 0 1893 -1 0 1897 0 0 end frb_curve_t