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We report analytic and computational investigations of the behavior of neuronal

networks with a general leaky stochastic neuron model, with neuron firing proba-

bility given by a function Φ(V ) of the membrane potential V , rather than a sharp

firing threshold. We found that the network can operate in various dynamic regimes

(phases) depending on the model parameters, including the shape of the firing func-

tion Φ. In particular, for certain critical parameters we found a continuous phase

transition to an absorbing stationary regime, in the directed percolation universality

class, and also discontinuous phase transitions. In the continuous transition crit-

ical line we observe neuronal avalanches whose distributions of size and duration

are given by power laws, as observed in real neuronal networks. We also propose

the use of dynamical neuronal gains (a form of neuronal short-term plasticity), in-

stead of dynamical synaptic strengths, as a more tractable mechanism to produce

self-organized criticality (SOC) and neuronal avalanches.
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I. INTRODUCTION

Integrate-and-fire (IF) neuron model were introduced the early 20th century [1] and have

been extensively used in the simulation of neuronal networks [2–7]. In these models, the

membrane potential V (t) integrates synaptic and external currents up to a firing threshold

value VT. Then, a spike is generated and V (t) drops to a reset potential VR. The leaky

integrate-and-fire (LIF) model extends the IF models with a leakage current, that causes

the potential V (t) to decay exponentially towards a baseline potential VB in the absence of

input signals [2, 4]. Despite their simplicity, these models have successfully emulated certain

phenomenna observed in biological neuronal networks, such as firing avalanches [8–11] and

multiple dynamical regimes [13, 14].

In the basic LIF models, the response of each neuron is deterministic. It has been

claimed that a stochastic model may be more adequate for simulation purposes [15]. Some

authors proposed to model those random influences by adding noise current inputs, both

in continuous-time [2, 3, 13, 14] and discrete-time [16–19], resulting in the leaky stochastic

integrate-and-fire (LSIF) model. In contrast, Galves and Löcherbach [20–22], and Larremore

et al. [23] proposed to incorporate stochasticity into LIF models by assuming that the firing

of a neuron is a random event, whose probability of occurrence in any time step is a firing

function Φ(V ) of membrane potential V . By subsuming all sources of randomness into

a single function, this Galves-Löcherbach (GL) neuron model simplifies the analysis and

simulation of neuronal networks.

Biological neural networks are known to exhibit plasticity : changes in neuronal parame-

ters over time scales longer than the firing time scale, which are believed to be essential for

higher functions like memory formation and learning [5, 24]. Short-term plasticity [25] has

typically been incorporated in models by assuming that the strength of each synapse is low-

ered after each firing, and then gradually recovers towards a quiescent value [9, 10, 30, 31].

These changes have been observed to drive the parameters of the network towards critical

values, which are believed to maximize its computational efficiency [8, 26–29]; a phenomenon

called self-organized criticality (SOC).

In this article, we first study the dynamics of networks of GL neurons, by a simple mean-

field approximation and by simulations of networks with thousands of elements. In the

mean-field analysis, we replace the stochastic evolution of the network by a deterministic
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evolution of a discrete probability distribution. We found both continuous and discontinuous

phase transitions depending on characteristics of the firing function Φ(V ). We found that,

for certain firing functions and critical parameter values, the stimulated firing of a single

neuron causes avalanches of firing events that are statistically similar to those observed in

biological networks [8, 28].

Second, we present a new mechanism for short-term plasticity based on dynamical changes

of a gain parameter associated to each neuron, instead of changing the individual synaptic

strengths [9]. In our simulations, this new plasticity model proved sufficient to achieve self-

organized criticality; but is much more efficient, since it has only one adaptive parameter

per neuron, instead of one per synapse.

II. THE MODEL

We assume a network of N Galves-Löcherbach neurons that change state in parallel at

certain sampling times with a uniform step ∆. Thus, the membrane potential of a neuron

i is modeled by a sequence of real values Vi[t], indexed by neuron number i (from 1 to N)

and by the discrete time t, an integer that represents the sampling time t∆.

Each synapse transmits the signals from some presynaptic neuron j to some postsynaptic

neuron i, and has a numerical attribute Wij, the synaptic strength. We assume that Wii = 0

for all i.

If some neuron j fires between discrete times t and t + 1, its potential drops to VR by

time t + 1. This event increments by Wij/N the potential of every neuron i that does not

fire in that interval. The potential of a non-firing neuron i may also integrate an external

input stimulus Ii[t], that can model neuronal or artificial signals from sources external to

the network received between times t and t+ 1. Apart from these increments, the potential

of a non-firing neuron decays exponentially by a factor µ ∈ [0, 1], that models the effect of

the leakage current.

We introduce the Boolean variable Xi[t] ∈ {0, 1} which denotes if neuron i fired between

t and t+ 1. The potentials evolve as:

Vi[t+ 1] =


VR if Xi[t] = 1,

µVi[t] + Ii[t] +
1

N

N∑
j=1

WijXj[t] if Xi[t] = 0.
(1)



6

Each Xi[t] is assumed to be an independent random variable whose distribution depends

on the potential Vi[t]. Namely, Xi[t] = 1 with probability Φ(Vi[t]), for some specified firing

function Φ [20, 21, 23].

We assume that Φ is sigmoidal: that is, monotonically increasing, with limiting values

Φ(−∞) = 0 and Φ(+∞) = 1, and only one derivative maximum. We also assume that

Φ(V ) is zero up to some threshold potential VT. If Φ is the shifted Heaviside step function

Θ, namely Φ(V ) = Θ(V − VT), we have a discrete time version of the deterministic LIF

neuron. Any other choice for Φ(V ) gives a stochastic neuron.

The network activity is measured by the fraction ρ[t] of the neurons that fired between

discrete times t and t+ 1, namely:

ρ[t] =
1

N

N∑
j=1

Xj[t] , (2)

The fraction ρ[t] can be computed from the distribution P [t] of potentials at discrete time

t:

ρ[t] =
∫ ∞

0
Φ(V )P [t](V ) dV , (3)

where P [t](V ) dV is the fraction of neurons with potential in the range [V, V +dV ] at discrete

time t. The neurons that fire between t and t + 1 have their potential reset to zero. They

contribute to the distribution P [t+ 1] a Dirac impulse at potential V = VR, with amplitude

(integral) ρ[t] given by Eq. (3). In subsequent time steps, the potentials of all neurons will

evolve in response to the firings of other neurons, according to Eq. (1). This process modifies

P [t] also for V 6= VR.

III. RESULTS

A. Analytic results for µ = 0

We now develop a simple mean-field analysis of a network with no external inputs, in

the limits N →∞ and µ→ 0. The latter implies that, at time t + 1, the neuron “forgets”

its previous potential Vi[t] and integrates only the synaptic inputs WijXj received at time t.

This scenario is interesting because it enables analytic solutions but exhibits all the kinds

of phase transitions found with µ > 0. In the Supplementary Material we give detailed

calculations for this and other scenarios, including µ > 0.
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When µ = 0, the potential distribution P [t] consists of only two peaks at potentials

U0[t] = VR = 0 and U1[t] = Wρ[t− 1], with fractions η0[t] and η1[t] that evolve by:

η0[t+ 1] = ρ[t] = Φ(VR)η0[t] + Φ(Wη0[t])(1− η0[t]) , (4)

with η1[t+ 1] = 1− η0[t+ 1]. Furthermore, if Φ(VR) = 0, Eq. (4) reduces to:

η0[t+ 1] = ρ[t] = Φ(Wη0[t])(1− η0[t]) . (5)

In a stationary state, the variables in Eq. (5) become independent of time, and the

equation simplifies to:

ρ = Φ(Wρ)(1− ρ) , (6)

with η0 = ρ, η1 = 1 − ρ, U0 = 0, and U1 = Wρ. Note that Φ(Wρ) is at most 1, so any

stationary solution must have ρ ≤ 1/2.

a. The inactive regime: For any firing function with VT ≥ 0, Eq. (6) has a solution

ρ = 0, that corresponds to an inactive stationary state where ρ[t] = 0 for all t. If VT > 0,

the solution is stable for any value of the other parameters. If VT ¡ 0, this is not a stationary

state. When VT = 0, its stability depends on the behavior of Φ at that potential, as discussed

below.

b. The degenerate 2-cycle regimes: If the firing function is 1 above some finite satu-

ration potential VS, and W is greater than WB = 2VS, the condition for stationary state

Eq. (6) reduces to ρ = 1− ρ, i.e. ρ = 1/2. This situation describes a degenerate stationary

regime, in which half the neurons fire at each step.

When W is strictly greater than WB, besides the stationary state with ρ = 1/2 there is an

infinitude of regimes where the same potential distribution repeats with period 2 (2-cycles),

and the activity ρ[t] alternates between 1/2 + ε and 1/2 − ε. In the (W, ρ) diagram, these

periodic states are bounded by the lines:

VS
W
≤ ρ ≤ W − VS

W
, (7)

that bifurcate at the point (W, ρ) = (WB, 1/2). See Fig. 1b. When W > WB, the stationary

solution with ρ = 1/2 and the 2-cycles are marginally stable, since small perturbations will

shift the network among these regimes. Note that these regimes are not a feature of the GL

model: they also occur with the step firing function, i. e. in the deterministic LIF model.
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B. The monomial firing functions

In this section we consider a specific class of firing functions with VT = VR = 0, the

saturating monomials. The class is parametrized by a degree r and a gain γ > 0. In all

these firing functions, Φ(V ) is 0 when V ≤ VT, and 1 when V ≥ VS where VS = VT + 1/γ.

When VT < V < VS, we have:

Φ(V ) = [γ(V − VT)]r . (8)

See Fig. 1a. Note that these functions can be seen as limiting cases of sigmoidal functions,

and that we obtain the deterministic LIF model Φ(V ) = Θ(V − VT) when γ →∞.

Here we consider only the case with VT = VR = 0. In the phase analyses that follow, the

control parameters are W and γ, and ρ(W, γ) is the order parameter.

a. The case r = 1 (continuous absorbing transition): For W < WB, when r = 1, Φ

is the linear function Φ(V ) = γV for 0 < V < VS = 1/γ. The stationary state condition

Eq. (6) then becomes:

γWρ2 + (1− γW )ρ = 0 . (9)

The two solutions are ρ = 0 (the inactive state) and

ρ =
W −WC

W
. (10)

Since we must have 0 < ρ ≤ 1/2, this solution is valid only for WC < W ≤ WB where

WC = 1/γ. This solution describes a stationary state where 1 − ρ of the neurons are at

potential U1 = W −WC. The neurons that will fire in the next step are a fraction Φ(U1) of

those, which are again a fraction ρ of the total. In this case, the state ρ = 0 is unstable: any

small perturbation of the potentials cause the network to converge to the active stationary

state above. For W < WC, the solution ρ = 0) is stable and absorbing. In the W, ρ) phase

diagram, the locus of stationary regimes defined by Eq. (10) bifurcates at W = WB into the

two bounds of Eq (7) that delimit the 2-cycles.

The condition W = WC is a standard continuous absorbing state transition with a critical

exponent α = 1. In the (W, γ) diagram, the transition corresponds to a critical line γ =

γC(W ) = 1/W , below the 2-cycle transition line γ = γB(W ) = 2/W . See Fig. 1c.

b. The case r > 1 (discontinuous transitions): For a monomial Φ with r 6= 1 and

W ≤ WB, the stationary state condition is:

(γW )rρr − (γW )rρr−1 + 1 = 0 . (11)
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FIG. 1: (a) Examples of monomial firing functions Φ(V ), with VT = 0, γ = 1 and r = 1/2, 1

and 2. (b) Fraction of firing neurons ρ as a function of the mean synaptic strength W for r = 1.

The line bifurcates at WB = 2/γ into two branches that bound the marginally stable 2-cycles. (c)

The (W,γ) hase diagram for r = 1. Below the critical line γ = γC(W ) = 1/W we have only the

absorbing inactive state ρ = 0. Above the line γ = γB(W ) = 2/W we have 2-cycles with marginal

stability and, in between, a single stable stationary regime with ρ = (W −WC)/W < 1/2.

This equation has a positive solution only when 1 ≤ r ≤ 2 and WC(r) < W ≤ WB, for

a certain WC(r) > 1/γ. In this case, at W = WC(r) there is a discontinuous (first-order)

phase transition to a regime with a positive activity ρ = ρC(r) < 1/2. See Fig. 2a. It turns

out that ρC(r) → 0 as r → 1, leading to the continuous phase transition in that limit. For

r = 2 the only positive solution to Eq. (11) with W ≤ WB is W = WC(2) = WB with value

ρ = ρC(2) = 1/2. For r > 2, the only active stationary state is the degenerate one, with

ρ = 1/2 and W ≥ WB.

c. The case r < 1 (small self-sustained activity): In the case of a monomial firing

function with VT = VR = 0, W < WB, and r < 1, there is no positive solution to Eq. (11),

and there is no phase transition, that is, WC(r) = 0 for any γ. In the ρ→ 0 limit, however,

we get WC(r)→ (1/γ)ρ(1−r)/r with the solution WC(r) = 0 for any r < 1, a continuous phase

transition at zero W . See Fig. 2b. Notice that we recover the correct value WC(1) = 1/γ

when r → 1. Interestingly, this ceaseless activity ρ > 0 for any W > 0 seems to be similar to

that found by Larremore et al. [23] with a µ = 0 monomial model with inhibitory neurons.
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FIG. 2: (a) Discontinuous phase transitions for the monomial Φ with µ = 0, γ = 1 with exponents

r = 1.1, 1.2, 1.5 and 1.8. The discontinuity ρC(r) goes to zero for r = 1. (b) Ceaseless activity

ρ(W ) for the monomial firing function with µ = 0, γ = 1, with exponents r = 0.1, 0.5, and 0.9.

C. The rational firing functions

We have also analyzed the case when Φ is a rational firing function:

Φ(V ) =
[γ(V − VT)]r

1 + [γ(V − VT)]r
, (12)

See Fig. 3a. Like the monomial functions, this class is parameterized by the exponent r and

the gain γ. However, these functions only tend to 1 in the limit V → ∞. Therefore, the

degenerate stationary case with ρ = 1/2 and the 2-cycles do not appear, for any W and γ

(i.e, WB = +∞). Also, there are non-degenerate stationary states for all r ≥ 1, whereas the

monomial function admits only degenerate states with r > 2. Apart from these differences,

the phase diagrams are determined by the exponent r in the same way as in the monomial

case.

For the rational Φ with VT = 0, the stationary state condition is:

2(γW )rρr − (γW )r

ρ1−r + 1 = 0 . (13)

When r = 1, for any W ≥ WC = 1/γ there is a positive solution of equation Eq. (6) See

Fig 3b. As in the monomial case, we find discontinuous (first-order) phase transitions when

r > 1 (Fig. 4a) and ceaseless activity near ρ = 0 when r < 1 (Fig. 4b). The detailed analysis

is given in the Supplementary material.
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FIG. 3: (a) Examples of rational firing functions Φ(V ): with VT = 0, γ = 1 and r = 1/2, 1 and 2

(from top to bottom). (b) Fraction of firing neurons ρ in a stationary regime as a function of W ,

for the rational firing function with r = 1.
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FIG. 4: (a) Discontinuous phase transitions for the rational firing function with µ = 0 and γ = 1,

for r = 1.2, 1.5, 2.0, 3.0 and 4.0. The discontinuity ρC goes to zero for r = 1. (b) Ceaseless activity

ρ(W ) for the rational model with µ = 0, γ = 1, with exponents r = 0.1, 0.5, and 0.9.

D. Neuronal Avalanches

Avalanche processes in neuronal networks have attracted significant interest, because

of their possible connection to efficient information processing [8, 26, 28, 29]. Through

numerical simulations, we also studied the critical point WC = 1, γC = 1, µ = 0 in search

for neuronal avalanches [8, 28] (Fig 5a). Indeed, we observed a power law avalanche size

distribution P (S) ∝ S−β (Fig. 5b), with the mean-field exponent β = 3/2 [8, 10, 28, 30, 31].
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We also used the complementary accumulated function C(S) =
∑∞
S=1 P (S)dS to perform

data collapse, and scaling with N , obtaining the cutoff exponent cS = 1/2 (Fig. 5c,d).
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FIG. 5: a) Example of avalanche profile ρ[t] at the critical point WC = 1, γ = 1 with µ = 1/2.

The size of an avalanche is S = N
∑b
t=a ρ[t] where ti = a and tf = b are the initial and final times

of the avalanche, respectively. The duration of the avalanche is D = b − a. b) Histogram of the

probability P (S) for an avalanche of size S, for network sizes N = 1000, 2000, 4000, 8000 and 16000.

The line proportional to S−β, with β = 3/2 is a guide to the eye. c) Complementary cumulative

function C(S) =
∑∞
S P (S)dS with the previous network sizes. This function gives the probability

of occurring an avalanche greater than S. Being an integral of P (S), its power law exponent is

−β + 1 = −1/2. d) Finite size scaling (data collapse for different N) for C(S,N), giving the N

independent curve g = S1/2C(S/N c
S). The cutoff exponent is cS = 1.
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We also studied the distribution of avalanche duration P (D), as a function of N (Fig. 6).

We obtained P (D) ∝ D−δ with δ = 2 and a cutoff exponent cD = 1/2, in accord with the

literature [10].
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FIG. 6: a) Mean duration < D > of avalanches at the critical point WC = 1, µ = 1/2 for network

sizes N = 1000, 2000, 4000, 8000 and 16000. b) Histogram of the probability P (D) for an avalanche

of duration D, for different network sizes. The line proportional to D−δ, with δ = 2 is a guide to

the eye. c) Complementary cumulative function C(D) =
∑∞
D P (D)dD with the previous network

sizes. This function gives the probability of occurring an avalanche greater than D. Being an

integral of P (D), its power law exponent is −δ + 1 = −1. d) Finite size scaling (data collapse for

different N) for C(D,N), giving the N independent curve gD = C(D/N c
D). The cutoff exponent

is also cD = 1/2.

E. The model with dynamic parameters

The results of Section III D were obtained by fine-tuning the network at the critical

line γW = γCWC = 1. If the critical region has some advantage, then we must present a

homeostatic mechanism that could tune such biological networks to the criticality.

One way to implement this idea is to let the weights Wij evolve with time, in a way that

mimics the observed loss of strength after a synaptic discharge (presumably due neurotrans-

mitter vesicles depletion), and the subsequent slow recovery [9, 10, 30, 31]. However, since

the relevant parameter for criticality in the GL model is γW , we propose instead to work

with dynamic gains γi[t] while keeping the Wij fixed. The idea is to reduce the gain γi[t]
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when the activity is too large, and let it recover towards a higher resting value when it is

too low:

γi[t+ 1] = (1− ε− νXi[t])γi[t] + εΓ . (14)

Here the factor ε = e−θ∆ is related to the characteristic recovery time θ for the gain, Γ is

the resting (maximum) gain, and ν ∈ [0, 1] is the fraction of gain lost due the discharge.

This model is plausible biologically, since it mimics the well known phenomenon of spike

adaptation [34, 35].

This approach seems sufficient to achieve self-organized criticality. Fig. 7a shows a

simulation where the average gain γ[t] = (
∑N
i=1 γi[t])/N tends towards the critical value

γC(W ) = 1/W , starting from γ[0] 6= 1. The avalanche size distributions (Fig. refSOCb) and

the finite-size scaling (Fig. 7c) are well behaved. A curious result is that the cutoff exponent

is now cS = 2/3 which differs from the static case (cS = 1).

FIG. 7: (a) Self-organization to criticality of the average gain γ[t] by using dynamical neuronal

gains γi[t] starting from different initial conditions, with γi[0] ∈ [0, γmax] so that the average gain is

γ[0] = γmax/2. The horizontal dashed line is the value γC = 1. (b) Avalanche size distribution P (S)

for several N . The solid line S3/2 is a guide to the eyes. (c) Data collapse of the complementary

accumulated function g = S1/2C(S/N c
S). The cutoff exponent is cS = 2/3.

IV. CONCLUSIONS AND PERSPECTIVES

a. Stochasticity in the model: According to our analysis and simulations, the GL

stochastic neuron model introduced by Galves and Löcherbach [20, 21] seems to be ade-

quate for neuronal network studies. The LSIF models of Soula et al. [16] and Cessac [17–19]

introduce stochasticity in the neuron’s behavior by adding noise terms to its potential,

whereas the GL model makes the firing a stochastic phenomenon with potential-dependent

probability Φ(V ).

The two models yield similar neuron and network behavior, but are not entirely equiv-

alent, because the integration of the noise terms makes the Soula and Cessac neurons less

deterministic with time. However, this difference is very subtle. With an appropriate choice

of parameters, the GL model should mimic the network behavior as the noisy input ones,

and vice-versa.
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b. Phase transitions: In particular, networks of GL neurons display a variety of dy-

namical states with interesting phase transitions. We looked for stationary regimes in such

networks, for some specific firing functions Φ with no spontaneous activity at the baseline

potential (that is, with Φ(0) = 0). We studied the changes in those regimes as a function

of the mean synaptic gain W . We found basically tree kinds of phase transitions [26–28]:

first order (discontinuous) absorbing transitions when Φ′(0) = 0, a ceaseless dynamic regime

with no phase transitions when Φ′(0) = +∞, and second order (continuous) absorbing phase

transitions when 0 < Φ′(0) < +∞.

The model studied by Larremore et al. [23] is equivalent to the GL model with monomial

firing function and r = 1. They did not report any phase transition (perhaps because of the

the inhibitory neurons in their network), but found a ceaseless activity very similar to what

we observed in monomial GL model with r < 1.

The deterministic IF neuron models do not seem allow these kinds of transitions are

not possible with deterministic IF neurons [5, 13, 14]. Perhaps, a stochastic firing function

Phi(V ) is a necessary ingredient to this kind of transitions.

c. Avalanches: In the case of second-order phase transitions (such as with monomial

Φ and r = 1), we detected firing avalanches at the critical parameter settings, whose size

distribution follows the expected power law.

d. Self-organized criticality: Inspired by the analysis of phase transitions, we proposed

a new mechanism for short-scale neuronal network plasticity, based on dynamically varying

neuron gains γi[t] instead of dynamic synaptic weights as proposed by other authors [9, 10,

30, 31]. This new mechanism is biologically plausible and was found to be sufficient to obtain

self-organized criticality. Its great advantage is computational efficiency: when simulating

N neurons with K synapses each, there are only N dynamic equations for the gains γi[t],

instead of NK equations for the synaptic weights Wij[t].

e. Directions for future research: Future research could investigate other network

topologies and firing functions, heterogeneous networks, the effect of inhibitory neu-

rons [13, 23], and network learning. The study of the self-organized criticality with GL

neurons and dynamic neuron gains is particularly promising.
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VI. METHODS

The avalanche statistics were obtained by simulating the evolution of a finite network

of N neurons, with uniform synaptic strengths Wij = W (except Wii = 0) and critical

parameter values. Each avalanche was started with all neuron potentials Vi[0] = VR = 0 and
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forcing the firing of a single neuron by setting Xi[0] = 1. The network was then simulated

according to Eq. (1) until all activity ceased and all potentials had decayed to such low

values that further firings would not be expected for thousands of steps.

VII. SUPPLEMENTARY INFORMATION

A. Details of the mean-Field analysis

In the mean-field analyses reported in this article, we assume that the synaptic weights

follow a distribution with average W and finite variance, and that the output axon of each

neuron makes synapses with all other neurons. The mean-field approximation disregards

correlations, so the final term of Eq. (1) becomes:

1

N

N∑
j=1

WijXj[t] = Wρ[t] . (15)

Notice that the variance of the weights Wij becomes immaterial when N tends to infinity.

In this analysis we also assume that the external inputs Ii[t] are zero for all neurons and

all times. Therefore, every neuron i that does not fire between t and t + 1 (that is, with

Xi[t] = 0) has its potential changed in the same way:

Vi[t+ 1] = µVi[t] +Wρ[t] , (16)

Recall that the distribution P [V, t] had a Dirac impulse at potential U0 = VR, representing

all neurons that fired in the previous interval. This Dirac impulse is modified in later steps

by Eq. (16). It follows that, once all neurons have fired at least once, the distribution P [V, t]

will be a combination of discrete impulses with amplitudes η0[t], η1[t], η2[t], . . ., at potentials

U0[t], U1[t], U2[t], . . ., such that
∑∞
k=0 ηk = 1 See Fig. 12.

The amplitude ηk[t] is the fraction of neurons with firing age k at discrete time t; that

is, neurons that fired between times t − k − 1 and t − k, and did not fire between t − k

and t. The common potential of those neurons, at time t, is Uk[t]. In particular, η0[t] is the

fraction ρ[t− 1] of neurons that fired in the previous time step, between discrete times t− 1

and t; and U0[t] is always VR. For this type of distribution, the integral of Eq. (3) becomes

a discrete sum:

ρ[t] =
∞∑
k=0

Φ(Uk[t])ηk[t] . (17)
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According to Eq. (16), the values ηk[t] and Uk[t] evolve by the equations

η0[t+ 1] = ρ[t] (18)

U0[t+ 1] = VR , (19)

ηk[t+ 1] = (1− Φ(Uk−1[t])) ηk−1[t] , (20)

Uk[t+ 1] = µUk−1[t] +Wρ[t] , (21)

for all k ≥ 1.

B. Stationary phases for general Φ and µ

In the context of mean-field analysis, a stationary phase is a potential distribution P (V )

of membrane potentials that does not change with time. In such a regime, quantities Uk

and ηk do not depend on the time t. Therefore, the evolution equations (18–21) become a

pair of recurrence equations:

η0 = ρ =
∞∑
k=0

Φ(Uk)ηk , (22)

U0 = 0 , (23)

ηk = (1− Φ(Uk−1)) ηk−1 , (24)

Uk = µUk−1 +Wρ , (25)

for all k ≥ 1. Since equations 22) and (24) are homogeneous on the ηk, the normalization

condition
∑∞
k=0 ηk = 1 must be included explicitly.

In some special cases, the solution has a closed analytic formula. For example, when µ =

0, Equations 25 reduce to Eq.( 6). Otherwose, Eqs. (22–25) can be solved numerically, e. g. by

simulating the evolution of the potential distribution P [V, t] according to Equation. (18–21),

starting from an arbitrary initial distribution, until reaching a stable distribution. (The

probabilities ηk should be renormalized for unit sum after each time step, to compensate for

rouding errors.)

We used this method to explore numerically the (W, ρ) and (W, γ) phase diagrams for

various values of µ > 0, for the monomial firing function with VT = 0 and r = 1 and γ. See

Fig. 8. Only the first 100 peaks (Uk, ηk) were considered, since, for the given µ and Φ, there

was no significant probability beyond that point.
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FIG. 8: a) Numerically computed (W,ρ) diagrams for the monomial firing function with r = 1 and

(γ, µ) = (1, 1/4), (1, 1/2), (1, 3/4), (1/2, 1/2), (2, 1/2). b) Numerically computed (W,γ) diagram for

showing some critical lines γC(W ) = (1−µ)/W and the bifurcation line γB(W ) = 2/W to 2-cycles.

When µ > 0, the critical line in the (W, γ) diagram becomes γC(W ) = (1 − µ)/W , or

WC(γ) = (1 − µ)/γ. See Fig. 8b. For W just above WC, we have ρ(W ) ≈ C(W −WC)/W

for some constant C > 0. The mean-field critical exponent is therefore α = 1, characteristic

of the directed percolation (DP) universality class [26, 28] – as in the case µ = 0.

C. Mean-field analysis with rational Φ and µ = 0

In this section we provide additional details of the mean-field analysis with rational firing

functions, Eq (12), with µ = 0 and VT = VR = 0. Recall that there are no degenerate

stationary regimes or 2-cycles, since these functions never saturate (WB = 2VS = +∞).

a. The case r = 1: With VT = 0 and r = 1, the rational firing function is

Φ(V ) =
γV

1 + γV
. (26)

In this case, Eq. (5) becomes:

2γWρ2 + (1− γW )ρ = 0 . (27)
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We then have a phase transition given by:

ρ =
W −WC

2W
=
γ − γC

2γ
(28)

with WC(γ) = 1/γ or γC(W ) = 1/W . See Fig. RhoxWratb. So, the critical line is the same

of the monomial model (Fig. 1c).

b. The case r > 1: The density of firing neurons is given by:

2(γW )rρr − (γW )rρr−1 + 1 = 0 . (29)

The discontinuous phase transitions occur when WC does not admit a value ρ > 0. For

example, with r = 2 we have:

ρ =
γW +

√
(γW )2 − 8

4γW
, (30)

which is well behaved and tends to ρ→ 1/2 when W →∞. However there is no solution for

W < WC =
√

8
γ

and at this point there is a discontinuous transition, with a step ρC = 1/4.

In general the step ρC(r) diminishes with r and we recover ρC = 0 for r = 1 (Fig. 2b).

D. Isolated neurons

In this section we analyze the behavior of the GL neuron model under the standard

experiment where an isolated neuron in vitro is artificially injected with a current of constant

intensity J . That corresponds to setting the external input signal I1[t] of that neuron to a

constant value I = J∆/C where C is the effective capacitance of the neuron.

?Ainda acho que não precisa dessa F (I). Estamos analisando o comporta-

mento do modelo; não tem que ajustar nada com experimentos. A firing rate

do modelo é a própria ρ do campo médio, sem nenhum fator multiplicador,

por este argumento: An isolated neuron will fire at a stable firing rate (average number

of firings per sampling step) ρ if and only if ρ is the mean-field firing ratio of an infinite net-

work of neurons, all with constant external input term I but no synaptic inputs. ?Então,

wue tal isto:

The time-averaged firing rate (average number of firings per sampling step) of the isolated

neuron can be derived in the same way as the firing ratio ρ of mean-field analysis. Namely:

ρ = Φ(I)(1− ρ) , (31)
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For the monomial firing function, while I < VS = 1/γ, we have:

ρ =
(γI)r

1 + (γI)r
, (32)

which is less than 1/2. For any I ≥ 1/γ the firing rate saturates at ρ = 1/2 (the neuron

fires at every other step, alternating between potentials U0 − VR = 0 and U1 = I .

For the rational function we have:

ρ =
(γI)r

1 + 2(γI)r
, (33)

which goes to ρ→ 1/2 only for I →∞ (Fig. 9).

In either case there are no phase transitions. Interestingly, Eqs. (e.rho.isolin)

and (e.rho.isorat), know as Michaelis-Menten functions, are frequently used to fit the (nor-

malized) firing response of biological neurons to constant input currents [36, 37].

?[stolfi:] Não tem phase transitions porque µ = 0 e VT = 0. Nesse caso o

experimento de injeção de corrente fica muito bobo: o efeito do I equivale a

deslocar o gráfico da Φ para a esquerda, causando Φ(0) > 0. Nos slides da

minha palestra tem o caso µ > 0, VT > 0, e lá aparecem regimes diferentes –

mas com transição bem gradual.
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FIG. 9: Firing rate of an isolated neuron with (a) monomial firing function and (b) rational firing

function, as a function of external input I, for exponents r = 0.5, 1.
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E. The case with threshold VT > 0

The standard IF model has VT > 0. If we allow this feature in our models we find a new

ingredient that produces first order phase transitions. Indeed, in this case, if U1 = Wρ+I <

VT then we have a single peak at U0 = 0 with η0 = 1, which means we have a silent state.

When U1 = Wρ + I > VT, we have a peak with height η1 = 1 − ρ and ρ = η0 = Φ(U1)η1.

For the linear monomial model this leads to the equations:

ρ = γ(U1 − VT)(1− ρ) , (34)

γWρ2 + (1− γW − γVT + γI)ρ+ γVT − γI = 0 , (35)

ρ =
(γW + γVT − γI − 1) +

√
(γW + γVT − γI − 1)2 − 4γ2WVT + 4γ2WI

2γW
. (36)

This solution exists only for γW values such that:

γ(W + VT − I)− 1 > 2γ
√
W (VT − I). (37)

This produces the condition:

γW > γWC =
(

1 +
√
γ(VT − I)

)2

, (38)

which defines a first order critical line. At the critical line the density of firing neurons is:

ρC =

√
γ(VT − I)

1 +
√
γ(VT − I)

, (39)

which is nonzero (discontinuous) for any VT > I. These transitions can be seen in (Fig. 10).

The solutions for Eqs. (36) and (39) is also valid only for ρC < 1/2 (2-cycle bifurcation).

This imply the maximal value VT = 1/γ − I.

The rational model also enables analytic solution. By following the same method we

obtain:

ρ =
2γ(VT − I) + γW − 1 +

√
(2γ(VT − I) + γW − 1)2 − 8γ2W (VT − I)

4γW
, (40)

γWC =
(

1 +
√

2γ(VT − I)
)2

, (41)

ρC =
1

2

√
2γ(VT − I)

1 +
√

2γ(VT − I)
. (42)
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FIG. 10: Phase transitions for the r = 1 a) monomial model and b) rational model, with γ = 1

and thresholds VT = 0, 0.1, 0.5 and 0.9. The discontinuity ρC goes to zero for VT → 0.

Since ρC → 1/2 only for VT →∞, we have no bifurcation to 2-cycles in the rational model.

Also notice that the solution is valid only for VT > I, with a discontinuous phase transition

with ρC > 0.

Similar results (discontinuous phase transitions with VT > 0) can be numerically obtained

for the r 6= 1 cases, both for the monomial and rational models.

VIII. JUNK

A. Cycles of period 2

?Esta seção estava dentro da seção “isolated neuron”. Parece supérflua, já

que estes ciclos (e seu diagrama de fase) são exatamente os mesmos do LIF

determińıstco, ou qualquer Φ que satura. O texto principal já diz tudo o que

há para dizer. Além disso, com µ > 0 e VT suficientemente grande (situação

realista?) aparecem p-ciclos para p > 2. Proponho tirar esta seção
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Cycles of period 2 appear for Φ(V ) functions that have a plateau Φ(V ) = 1 above some

VS. For example, the monomial function (for any r) has a plateau for V > VT + 1/gamma.

In the case r = 1, µ = 0, VT = 0, V = Wρ and the 2-cycles bifurcation occur at ρ = 1/2

so that When W > WB = 2/γ, we have Φ(V ) = 1. From this point all the neurons of the

peak U1[t] = Wρ[t] > 1/γ (with density η1[t]) fire together creating in the next step the

peak η0[t + 1] = η1[t], and the previous peak η0[t] goes to the position U1[t + 1] creating

η[t+ 1] = η[t]. Since ρ[t] = η0[t], we have a 2-cycle ρ[t+ 1] = 1− ρ[t] where the amplitudes

differ (they are equal, ρ[t+ 1] = ρ[t] = 1/2 only at the bifurcation point.

These 2-cycles are somewhat anomalous regimes: they have marginal stability and have

no attraction basin. That is, if the initial condition is put as ρ[t = 0] = ηa > 1/2, then in

the next step we have ρ[t = 1] = ηb = 1− ηa < 1/2 and the network goes back to the initial

state.

The values for ηa, ηb are not unique for a given W (as would be the case of a 2-cycle with

an attractor basin), but can assume any value inside an interval [ηmax(W ), ηmin(W )] where

ηmin = 1 − ηmax(W ). We can determine these values from the condition U1 = Wηmin is

situated at the beginning of the plateau at V = 1/γ, that is, ηmin = 1/(γW ) and ηmax =

(γW − 1)/(γW ) (Fig. 11).

For functions Φ(V ) that do not have plateaus, like the rational model, such 2-cycles are

not stationary phases. However, for large W such that Φ(V ) ≈ 1, transient 2-cycles appear.

Since transient synchronized oscillations have been observed in some biological networks, it

could be that these 2-cycles of our models have some biological meaning. Their frequency is

given by f = 2/δt, where ∆t is the inverse of our discrete time step, a free parameter that

could be adjusted to the experimental data.

B. The case µ > 0

Models with any function Φ(V ) can be solved numerically from the general schema given

by Eqs. (??). Similarly to the case µ = 0, what determines the nature (or absence) of a

phase transition is the exponent r that dominates the low V behavior of Φ(V ). As before, if

r < 1, we have WC = 0 and if r > 0 (or VT > 0) we have a discontinuous phase transitions.

In the r = 1 case, we have a continuous phase transition. This will be fully explored in

another paper. Here we only report the monomial case with r = 1 and general µ because it
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allows some analytic results.

We consider the firing function φ(V ) = γV for 0 < V < 1/γ and φ(V ) = 1 for V > 1/γ.

With this Φ(V ), Eqs. (3) simplify to two cases. If there is a peak n at Un > 1/γ we get:

ρ = γ
n−1∑
k=1

Ukηk + ηn , (43)

but if all peaks are below V = 1/γ we write:

ρ = γ
∞∑
k=1

Ukηk . (44)

We also have:

ηk = (1− γUk−1) ηk−1 , (45)

Uk = µUk−1 +Wρ , (46)

So, the solution of Eq. (43) depends on the number of peaks below U = 1/γ and the single

peak with Un > 1/γ (with this Φ(U), the (1− Φ(Un) = 0 term kills all superior peaks with

k > n) (Fig. 12).
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FIG. 12: Examples of stationary potential distributions P (V ) for the monomial r = 1 case with

different values of W and µ = 1/2, γ = 1. a) W2 = WB = 2, two peaks; b) W3 = 14
9 , three peaks;

c) W4 = 488
343 , four peaks, d) W∞ ≈ 1.32, infinite number of peaks with U∞ = 1. Notice that for

W < W∞ all the peaks in the distribution P (V ) lie at potentials Uk < 1/γ. For WB = 2 we have

η0 = η1 = 1/2, producing a bifurcation to a 2-cycle.

Lets start with the simple case where there are only two peaks, one at U0 = 0 with density

η0 and the other (n = 1) peak exactly at U1 = 1/γ with density η1. In this case, Eq. (??)

tell us that ρ = η1, that is, ρ = 1/2 (because the sum of the peaks is equal to one due to the

normalization of P (V ). Moreover, to produce U1 = 1/γ we must have a specific value W2

such that W2ρ = 1/γ, that is, W2 = 2/γ, which is the same result obtained for µ = 0, since

it does not depends on µ (Fig. 12a). The point W2 = WB = 2/γ is indeed the bifurcation

point for the marginally stable 2-cycle attractors, and the line WB(γ) is the same as that

obtained for µ = 0.

Now lets consider the case of three peaks, where U1 < 1/γ and U2 ≥ 1/γ. The stationary

equations for them are:

ρ = η0 = γU1η1 + η2 , (47)
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η1 = η0 , (48)

η2 = (1− γU1) η1 , (49)

where the normalization condition
∑
k ηk = 1 holds. From the two first equations and

η2 = 1− η0 − η1 = 1− 2ρ we get, remembering that U1 = Wρ:

γWρ2 − 3ρ+ 1 = 0 , (50)

with the solution,

ρ =
3−
√

9− 4γW

2γW
. (51)

Notice that this solution is only valid when P (V ) has three peaks (and also with W ≤ 2/γ).

In the equality case, Eq. (51) gives ρ = 1/2 as expected.

The minimum value W3 of W that produces three peaks is given by:

U2 = 1/gamma , (52)

µU1 +W3ρ = (µ+ 1)W3ρ = 1/γ , (53)

which gives

W3 =
1

γ(µ+ 1)ρ
. (54)

Inserting in Eq. (50) we get:

ρ =
µ+ 1

3µ+ 2
, (55)

W3 =
3µ+ 2

γ(µ+ 1)2
. (56)

As before, ρ(W3) does not depend on γ. As an example, if µ = 1/2, we have that the

minimum weight is W3 = 14
9γ
≈ 1.5555

γ
with ρ(W3) = 3/7 ≈ 0.4285 (Fig. 12b).

For an interval W4 < W < W3, P (V ) has four peaks and we follow the same calculation

method. First we write the equations for the peaks:

ρ = η0 = γU1η1 + γU2η2 + η3 , (57)

η1 = η0 , (58)

η2 = (1− γU1) η1 , (59)

η3 = (1− γU2) η2 , (60)



30

with the normalization
∑3
k=0 ηk = 1. By using η3 = 1− η0 − η1 − η2 and η1 = ρ we obtain:

(µ+ 1)(γW )2ρ3 − (3 + µ)γWρ2 + 4ρ− 1 = 0 . (61)

By solving for the roots of this third degree equation we obtain the solution for ρ (in the

interval [0, 1]). The point W4 for the validity interval can be easily obtained by using the

condition U3 = 1/γ, leading to:

W4 =
1

γ(µ2 + µ+ 1)ρ
. (62)

Inserting in Eq. (61) gives, after some algebra:

ρ(W4) =
(µ2 + µ+ 1)2

4µ4 + 7µ3 + 8µ2 + 5µ+ 2
. (63)

For example, in the case µ = 1/2, we have:

ρ(W4) =
49

122
= 0.40163... , (64)

W4 =
4

7γρ
=

488

343γ
≈ 1.4223

γ
(65)

(Fig. 12c). So, the solution from Eq. (61) with µ = 1/2, γ = 1 is valid in the interval

W ∈
[
1.4223γ; 1.5555

γ

]
.

Next we show that there is a regime where there is no peak above V > 1/gamma. This

can be seem as follows:

Uk = µUk−1 +Wρ) , (66)

U0 = 0 , (67)

U1 = Wρ , (68)

U2 = (1 + µ)Wρ , (69)

U3 = (1 + µ+ µ2)Wρ , (70)

Uk =

k−1∑
j=0

µj

Wρ , (71)

U∞ =

 ∞∑
j=0

µj

Wρ =

(
1

1− µ

)
Wρ . (72)

So, imposing U∞ < 1/gamma, we obtain that if Wρ < (1 − µ)/γ there is no peaks above

V = 1.
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In this regime, we can calculate the position of the peaks as Uk = Wρ
∑k−1
j=0 µ

j, which

is a more direct form than the iterative one given by Eq. (46). By using all the previous

analytic and numerical results (with maximal k = 20) we compare them with simulations

with N = 10000 neurons (Fig. 8).

C. Monomial model with µ > 0 and firing threshold VT

For any r, a discontinuous phase transition occurs if we have a firing threshold VT > 0,

as in the case with µ = 0. We also have a bifurcation to 2-cycles at WB = 2
(

1
γ

+ VT
)
. A

numerical phase diagram for γ = 1, µ = 1/2 in the plane (W,VT) (Fig. 13).

Phase diagram for W (V t h)

V t h
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FIG. 13: Phase diagram for the linear monomial model with threshold VT, γ = 1 and µ = 1/2. We

have a first order critical line WC(VT) determined numerically, and an analytic 2-cycle bifurcation

line WB = 2(1/γ + VT).


