Na₂ZnO₂, ein neues Natriumzinkat

Na₂ZnO₂, a New Sodium Zincate

D. Trinschek, M. Jansen*

Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn

Z. Naturforsch. 51 b, 711-714 (1996); eingegangen am 10. August 1995

Sodium Zincates, Crystal Structure, Metastability

By reacting Na₂O, which was produced *in situ* from NaN₃ and NaNO₂, with reactive ZnO in the solid state, the synthesis of Na₂ZnO₂ has been achieved. Na₂ZnO₂ is metastable up to about 750°C. The novel sodium zincate crystallizes in the space group P2₁/c (No. 14) with the lattice parameters a = 7.7352(2), b = 5.9782(2), c = 5.7248(2)Å, $\beta = 94.934(3)^\circ$, Z = 4. According to a single crystal structure determination it is an representative of the anti type of the Ln₂S₂O (Ln = Er, Tm, Yb, Dy) structure.

Einleitung

Unter Anwendung einer neuen Präparationsmethode für Natriumoxometallate gelang uns die Darstellung von vorher unbekanntem $Na_{10}Zn_4O_9$ [1]. Die einfache und sehr effektive Synthesetechnik bot sich zur erneuten Untersuchung des Systems Na_2O/ZnO , vor allem zur Herstellung und Kristallzüchtung des lange gesuchten Na_2ZnO_2 an. Über Versuche zu dessen Darstellung wurde mehrmals berichtet [2, 3], ein Strukturvorschlag für " Na_2ZnO_2 " ist in der Dissertation von Baier [4] beschrieben. Anhand der kristallographischen Daten dieser Verbindung kann jedoch festgestellt werden, daß es sich hierbei um $Na_{10}Zn_4O_9$ [1] handelt.

Experimentelles

Darstellung der Proben

Zur Präparation von Na_2ZnO_2 verwendeten wir die gleiche Methode wie zur Darstellung von $Na_{10}Zn_4O_9$ [1]. Nach der Vortrocknung (2 h bei 150 °C/10⁻³ Torr) werden die Ausgangsverbindungen NaN₃ (Merck, p. a.), NaNO₂ (Merck, p. a.) und ZnO (aus Zersetzung von ZnC₂O₄ [5]) im Molverhältnis 3 : 1 : 2 vermengt. Das Gemenge wird zunächst in einem Mörser verrieben, danach 20 min in einer Kugelmühle homogenisiert (Pulverisette 7, Fritsch GmbH) und in einen kupferausgekleideten Stahltiegel eingefüllt. Nach einer erneuten Trocknung der Eduktmischung (5 h im Vakuum bei 200 - 220°C) wird das Reaktionsgefäß verschlossen und anschließend im Röhrenofen auf 260 °C erhitzt. Mit 5 °C/h wird die Ofentemperatur auf 390 °C erhöht. Bei anschließendem Tempern der Probe bei 390 °C und einer Reaktionsdauer von 20 h entsteht feinkristallines Na₂ZnO₂, das stets durch kleinere Mengen an Na₂Zn₂O₃ und Na₁₀Zn₄O₉ verunreinigt ist. Einkristalle von Na₂ZnO₂ wurden durch zwanzigtägige Reaktion bei 800 °C und anschließendes Abschrecken der Probe in einer tiefschmelzenden Metallegierung (Rose'sches Metall, Schmp. 94 °C) erhalten.

Einkristallpräparation

 Na_2ZnO_2 bildet plättchenförmige, farblose Kristalle (Dicke < 0,01 mm). Mit Hilfe eines Stereomikroskops wurde unter getrocknetem Paraffin ein Einkristall ausgewählt und unter Schutzgas in ein Markröhrchen überführt.

Röntgenographische Charakterisierung

Die Pulverdiffraktogramme wurden mit Hilfe eines Pulverdiffraktometers (Stadi P, STOE, CuK α_1 , Germaniummonochromator) aufgenommen. Aus einem Pulverdiffraktogramm wurden die Gitterkonstanten von Na₂ZnO₂ bestimmt (vgl. Tab. I). Von einem ausgewählten Einkristall wurden mit einer Weissenberg-Kammer (Y800, STOE) Drehkristall- und Weissenberg-Aufnahmen angefertigt, die Intensitätsdatensammlung erfolgte auf einem automatischen Vierkreisdiffraktometer (CAD4, Enraf-Nonius, MoK α , Graphitmonochromator). Auslöschungsbedingungen und Laue-Symmetrie verwiesen eindeutig auf die Raumgruppe P21/c (Nr. 14). Tabelle II enthält die Meßparameter der Datensammlung. Die Lösung der Struktur wurde mit direkten Methoden durchgeführt (SHELXS-86 [6]), zur Strukturverfeinerung wurde das Programm SHELXL-93 [7] verwendet. Die Abbildungen wurden mit dem Programm KPLOT erstellt [8].

0939–5075/96/0500–0711 \$ 06.00 © 1996 Verlag der Zeitschrift für Naturforschung. All rights reserved. K

^{*} Sonderdruckanforderungen an Prof. Dr. M. Jansen.

	- , ,		8		
h	k	l	d_{obs}	d _{calc}	I _{obs}
1	0	0	7,712	7,707	100
1	1	0	4,724	4,724	18
0	1	1	4,128	4,127	20
-1	1	1	3,736	3,736	81
1	1	1	3,547	3,547	7
2	1	0	3,238	3,239	18
-2	1	1	2,908	2,908	9
1	2	0	2,786	2,787	7
-1	0	2	2,752	2,753	5
0	2	1	2,647	2,648	16
1	0	2	2,603	2,603	43
3	0	0	2,568	2,569	27
$^{-1}$	2	1	2,535	2,535	3
1	2	1	2,474	2,474	60
-2	0	2	2,393	2,393	25
3	1	0	2,360	2,360	21
-2	2	1	2,224	2,224	48
2	0	2	2,204	2,203	10
2	2	1	2,142	2,143	8
2	1	2	2,067	2,068	9
0	2	2	2,064	2,063	13
-1	2	2	2,025	2,025	6
1	2	2	1,962	1,963	3
3	2	0	1,949	1,948	3
4	0	0	1,927	1,927	9
-3	2	1	1,882	1,882	28
3	0	2	1,832	1,832	7

Tab. I. Auswertung eines Pulverdiffraktogramms von Na₂ZnO₂ (CuK α_1 / Germaniummonochromator), Kalibrierung mit Si (*a* = 5,4309 Å); aufgelistet sind Reflexe mit d > 1,83, bez. weiterer Daten vgl. [10].

Tabelle III enthält Atomkoordinaten, Tabelle IV die Temperaturfaktoren als Ergebnis der letzten Verfeinerung*.

Ergebnisse und Diskussion

Das bei 390 °C hergestellte Produkt ist stets mit den Nachbarphasen Na₂Zn₂O₃ und Na₁₀Zn₄O₉ verunreinigt (vgl. Abb. 1). Sowohl die Erhöhung der Reaktionstemperatur auf 450 °C bei gleicher Reaktionszeit, wie auch die Erhöhung der Reaktionszeit auf 50 h bei gleichbleibender Reaktionstemperatur haben zur Folge, daß das Reaktionsgemenge kein Na₂ZnO₂ mehr enthält. Bei der Umsetzung entsteht also zunächst Na₂ZnO₂,

$$3 \text{ NaN}_3 + \text{NaNO}_2 + 2 \text{ ZnO} \rightarrow 2 \text{ Na}_2 \text{ZnO}_2 + 5 \text{N}_2$$

Tab. II. Kristallographische Daten und Parameter der Datensammlung von Na_2ZnO_2 .

Raumgruppe	$P2_1/c$ (Nr. 14)
Gitterkonstanten	a = 7,7352(2) Å
(aus Pulverdaten)	b = 5.9782(2) Å
	c = 5.7248(2) Å
	$\beta = 94.934(3)^{\circ}$
Volumen der Elementarzelle	$V = 263,75(1) Å^3$
Formeleinh. / Elementarzelle	Z = 4
Kristallform	rechteckiges Plättchen
Kristallfarbe	farblos
Kristallgröße	$0.05 \text{ mm} \times 0.03 \text{ mm}$
Röntgenographische Dichte	$3,61 \text{ g/cm}^3$
Diffraktometer	CAD4
Strahlung/Monochromator	MoK α / Graphit
Abtastbreite (°)	$0.7 + 0.35 \cdot \tan \Theta$
Scan-Modus	$\omega - \frac{2}{3}\Theta$
Max. Meßzeit pro Reflex	60 s
Meßbereich	$\Theta = 0 - 40^{\circ}$
h_{\min}, h_{\max}	-3, 13
k_{\min}, k_{\max}	-2, 10
l_{\min}, l_{\max}	-10, 10
Anzahl gem. Reflexe	1886
Anzahl sym. unabh. Reflexe	1604
Reflexe mit $F_o > 4 \sigma(F_o)$	1119
Anzahl verfein. Parameter	47
$R_{\rm int}$	0,0078
<i>R</i> 1	0,082 (1119 Reflexe)
GooF	1,26
Restelektronen / Å ³	max.: 4,6; min.: -4,3

Tab. III. Lageparameter und isotrope Temperaturparameter für Na₂ZnO₂, Standardabweichungen in Klammern.

Atom	Lage	x	у	z	U _{iso}
Zn	4e	0.3672(1)	0,1059(1)	0,3545(1)	0,0091(2)
Na1	4e	0,6775(5)	0,1448(6)	0,0706(6)	0,0157(6)
Na2	4e	0,0274(5)	0,2584(6)	0,0087(6)	0,0147(6)
01	4e	0,5634(7)	0,6231(9)	0,8004(8)	0,0112(8)
O2	4e	0,1492(7)	0,5340(9)	0,7515(9)	0,0118(8)

das bereits bei der Herstellungstemperatur nach

$$6 \operatorname{Na}_2 ZnO_2 \rightarrow \operatorname{Na}_2 Zn_2O_3 + \operatorname{Na}_{10} Zn_4O_9$$

zu zerfallen beginnt. Eine umfassende Variation der Reaktionsparameter zeigte, daß es zur erneuten Bildung von Na₂ZnO₂ erst bei einer Reaktionstemperatur oberhalb von 750 °C kommt. Der Gehalt der Proben an Na₂ZnO₂ ist dann aber stark von der Abkühlgeschwindigkeit der Präparate abhängig: Läßt man die Proben im Röhrenofen abkühlen, ist im Produkt kein Na₂ZnO₂ nachzuweisen, werden sie dagegen von der Reaktionstemperatur innerhalb weniger

^{*}Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-404761 angefordert werden.

D. Trinschek – M. Jansen · Na₂ZnO₂, ein neues Natriumzinkat

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Zn1	0,0114(4)	0,0085(3)	0,0071(3) 0,0002(2)	0,0006(2)	-0,0006(3)	
Nal	0,019(1)	0,015(1)	0,014(1)	-0,001(1)	0,006(1)	-0,0005(11)	
Na2	0,018(1)	0,016(1)	0,010(1)	-0,001(10)	0,002(1)	0,0006(11)	
01	0,016(2)	0,012(2)	0,005(2)	0,003(1)	0,003(1)	-0,004(2)	
02	0,011(2)	0,013(2)	0,011(2)	-0,001(2)	0,0008(14)	0.000(2)	
	01			02			
Zn	1,945(5),	2,005(5), 2	,086(5)	1,929(5)			
Na1	2,296(6),	2,486(7), 2	,705(7)	2,462(6), 2,5	08(7)		
Na2				2,352(7), 2,3	70(6), 2,377	(7), 2, 451(7)	
М	O1-M-C	01'	02	2-M-O2'	O1–M	I–O2	
Zn	110,2(2),	104,2(1),	_		119,4	(2), 118, 5(2),	
	92,5(2)				107,4	107,4(2)	
Nal	83,4(1),9	98,3(2), 77,	1(2) 10	1,8(2)	120,2	(2), 121, 3(2),	
					80,8(2	2), 77,4(2)	
Na2			10	9,5(3), 97,5(2	2), —		
			10.	5,4(2), 103,6	(2),		
			10.	5,5(2), 133,8	(3)		

Tab. IV. Temperaturparameter^a $[Å^2]$ für Na₂ZnO₂, Standardabweichungen in Klammern.

^a Der anisotrope Temperaturfaktor hat die Form: $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)]$

Tab. V. Bindungslängen [Å] für Na₂ZnO₂, Standardabweichungen in Klammern.

Tab. VI. Bindungswinkel [°] für Na₂ZnO₂, Standardabweichungen in Klammern.

Abb. 1. Pulverdiffraktogramm von Na_2ZnO_2 ; oben: gemessenes Pulverdiffraktogramm (mit \vdots sind Reflexe von $Na_2Zn_2O_3$, mit | Reflexe von $Na_{10}Zn_4O_9$ gekennzeichnet); unten: Mit THEO [9] anhand der Einkristalldaten berechnetes Pulverdifraktogramm.

Sekunden auf Temperaturen unter 150 °C abgeschreckt, enthalten die Produktgemenge vorwiegend Na₂ZnO₂. Den höchsten Gehalt an Na₂ZnO₂ (60 - 80%) wiesen Proben auf, die auf 120 °C in einer geschmolzenen Metallegierung (Rose'sches Metall) abgeschreckt wurden. Es gelang jedoch weder bei hohen (750 - 850 °C), noch bei tiefen (300 -400 °C) Temperaturen, phasenreines Na₂ZnO₂ herzustellen.

Abb. 2. Aufbau einer $(ZnO_2)_n$ Schicht in Na₂ZnO₂, Blickrichtung *a*.

Strukturbeschreibung

In Na₂ZnO₂ ist Zink angenähert tetraedrisch von Sauerstoff koordiniert. Die Zn–O-Abstände (vgl. Tab. V) liegen im Bereich zwischen 1,929 und 2,086 Å, die O–Zn–O-Winkel zwischen 92,5 und 110,2° (vgl. Tab. VI). Die Abstände stimmen mit den für Na₂Zn₂O₃ [11] und Na₆ZnO₄ [12] gefundenen Werten überein. Die ZnO₄-Tetraeder sind zwei-

Abb. 3. Koordinationspolyeder der Natriumatome in Na₂ZnO₂.

dimensional (parallel zur *bc*-Ebene) über Ecken und Kanten miteinander verknüpft (vgl. Abb. 2). Drei Ecken der Tetraeder sind mit O1 besetzt, die vierte mit O2. Die Verknüpfung der ZnO_4 -Tetraeder zu Schichten erfolgt ausschließlich über O1, das drei Tetraedern gemeinsam ist; O2 ist endständig, also an der Verknüpfung nicht beteiligt. Der Ladungsausgleich und die Verknüpfung der Schichten miteinander erfolgt über Natriumionen; Na1 ist tetragonal-pyramidal, Na2 tetraedrisch von Sauerstoffatomen umgeben (Abb. 3). Der Strukturtyp, in dem Na₂ZnO₂ kristallisiert, entspricht dem *anti*-Typ der Strukturfamilie Ln_2S_2O (Ln = Er, Tm, Yb, Dy) [13, 14]. Die Zink und Natriumatome liegen auf den Sauerstoff bzw. Schwefellagen der Ln_2S_2O -Struktur, die Sauerstoffatome besetzen die Lanthanoid-Lagen.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung mit Sachmitteln.

- D. Trinschek, M. Jansen, Z. Anorg. Allg. Chem. 622, 245 (1996).
- [2] R. Hoppe, P. Kastner, Z. Anorg. Allg. Chem. 393, 105 (1972).
- [3] R. Baier, R. Hoppe, Z. Anorg. Allg. Chem. 546, 122 (1987).
- [4] R. Baier, R. Hoppe, Dissertation R. Baier, Univ. Gießen (1985).
- [5] G. F. Hüttig, T. Meyer, Z. Anorg. Allg. Chem. 207, 234 (1932).
- [6] G. M. Sheldrick, SHELXS-86, Programm zur Kristallstrukturbestimmung, Göttingen (1990).
- [7] G. M. Sheldrick, SHELXL-93, Programm zur Kristallstrukturverfeinerung, Göttingen (1993).

- [8] R. Hundt, KPLOT, Programm zum Zeichnen von Kristallstrukturen, Univ. Bonn (1979).
- [9] Fa. STOE, Programm THEO, Softwarepaket VISU-AL X POW.
- [10] D. Trinschek, M. Jansen, Dissertation D. Trinschek, Univ. Bonn (1996).
- [11] R. Vielhaber, R. Hoppe, Z. Anorg. Allg. Chem. 338, 209 (1965).
- [12] R. Hoppe, P. Kastner, Z. Anorg. Allg. Chem. 409, 69 (1974).
- [13] K. J. Range, K. G. Lange, A. Gietl, J. Less Common Met. 158, 137 (1990).
- [14] T. Schleidt, Z. Anorg. Allg. Chem. 602, 39 (1991).