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ABSTRACT 

In modern geodesy the triaxial ellipsoid as a generalisation of the ellipsoid of 
revolution has a significant position in studying the figure of the Earth. Lamé surfaces 
represent a generalisation of the triaxial ellipsoid. The following paragraphs are devoted 
to curvatures of the Lamé surfaces. 
 

K e yw ord s :  triaxial ellipsoid, Lamé surfaces, principal curvatures, Gaussian 
curvature 
 

1. INTRODUCTION 

Let us begin with short historical notes. Fedor’ Fedorovich’ Shubert (Schubert) 
[1789�1865; Russian general, head of triangu-lation of the St. Petersburg district, 
participant in many geodetic and astronomical projects; his father Theodor Schubert 
(1758�1825), born in Braunschweig, astronomer, member of the Academy in St. 
Petersburg - see Èntsiklop. slovar’ (1903)] already in 1859 proposed the triaxial ellipsoid 
as the figure of the Earth (see Pizzetti (1906); on page 235 there are further data on the 
first applications of the triaxial ellipsoid in geodesy). For more recent data see Hopfner 
(1930) and Fondelli (1965). Schmehl (1927) introduced geographic coordinates on the 
triaxial ellipsoid and studied this ellipsoid applying methods of differential geometry. 

Burša and P✁✂ (1993), Burša and Kostelecký (1999), Burša (2001) use the triaxial 
ellipsoid for studying the figure of the Earth and other celestial bodies; see Burša and 
Šíma (1980) too.  

As an example of especially significant triaxiality is Phobos with a = 13 500 m, 
b = 10 700 m, c = 9 600 m; see Burša (1989). 

Lamé (1818) defined and studied the curves, which also comprise the ellipse as a very 
special case. Among the Lamé curves are, e.g., the known astroid and evolute of an 
ellipse. For references see Loria (1910), Teixeira (1909), Brocard and Lemoyne (1967). 
The extension of the Lamé curves to Lamé surfaces - similarly as the transition from the 
ellipse to the triaxial ellipsoid - on the basis of analogous analytical expressions is natural. 
Among the Lamé surfaces the triaxial ellipsoid is a very special case. 

The following is devoted to the differential geometry of the Lamé surfaces. However, 
we shall first show the origin of their analytical representation. 
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2. PRELIMINARIES 

We establish the origin in the plane on the system of orthogonal coordinates x, y, or in 
space on the system of orthogonal coordinates x, y, z. 

In the first quadrant the ellipse with semi-axes a, b 

 
2 2

1
x y

a b
� ✁ � ✁

✂✄ ☎ ✄ ☎
✆ ✝ ✆ ✝

✞  (1) 

has the parametric representation  
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where 
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cos sinh a b✎ ✎✏✑ ✒
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✕
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 (3) 

is the distance of the origin, i.e. the centre of the ellipse, from the tangent at point P[x,y] 
of the ellipse. In the theory of convex figures this oriented distance is called the support 
function. The essential part of this theory is based only on studying the support function 
and its properties. The curvature of ellipse (1) at its point P is 

 3
2 2

1
k

a b
✘ h . (4) 

For the vertices of this ellipse h = a, or h = b, and from Eq.(4) follows, on the one 

hand, 2b a  as the radius of curvature at the vertex on axis x, on the other hand, 2a b  as 

the radius of curvature at the vertex on axis y. Let us also point out, that, if a > b, support 
function h from (3) is the a-multiple of geodetic function W; see Kostelecký and Nádeník 
(1971). 

In the first quadrant the natural generalisation of ellipse (1) is represented by the Lamé 
curve 
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Its parametric representation is 
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where 

278 Stud. Geophys. Geod., 49 (2005) 



Lamé Surfaces as a Generalisation of the Triaxial Ellipsoid 

 � ✁ � ✁

✂ ✄
1 1

1

cos sin
p p

p p

p p

h a b★ ★✩ ✩
☎

✆ ✝
✞✬ ✟✠

✡ ☛
, 0,

2
★

☞
✌  (7) 

is the support function of our Lamé curve, relative to the origin. The formulae for the 
curvature of the curve are well-known from the theory of plane curves. Using these 
formulae we can see that the curvature of Lamé curve (5)  

 ✍ ✎
2 31 p

p p

p
k xy

a b

✏✑
✜ h  (8) 

with x, y from (6) and with h from (7). Especially if p = 2, (1)✒(4) follow from (5)✒(8).  
In the first octant the ellipsoid with semi-axes a, b, c 

 
2 2 2

1
x y z

a b c

✙ ✚ ✙ ✚ ✙ ✚
✛ ✛ ✜✢ ✣ ✢ ✣ ✢ ✣

✤ ✥ ✤ ✥ ✤ ✥
 (9) 
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where 
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cos cos cos sin sinH a b c✎ ✛ ✎ ✛ ✎
2✏ ✕✑ ✒ ✒
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is the distance of the origin, i.e. the centre of the ellipsoid, from the tangent plane at point 
P[x,y,z] of the ellipsoid. In the terminology of the theory of convex bodies H is the 
support function, the application of which forms the essential part of this theory. The 
Gaussian curvature of an ellipsoid 

 4
2 2 2

1
K H

a b c
✜ , (12) 

see also Kostelecký and Nádeník (1971) and Holota and Nádeník (1971), inclusive of 
references. Eqs.(9)✜(12) give a lucid generalisation of Eqs.(1)✜(4). 

On the ellipsoid Eq.(12) enables a very simple construction of the curves, along which 
the Gaussian curvature is constant. We choose a sphere, concentric with the ellipsoid, 
whose radius H is such that there exist common tangent planes to our ellipsoid and sphere. 
On the ellipsoid the tangent points of these planes form a curve with constant Gaussian 
curvature. 

Please, note that Burša and P✢✣ (1993), Burša and Kostelecký (1999), Burša (2001) 
work with the radius vector of point P of the triaxial ellipsoid, but this paper is based on 
the support function. 

The above mentioned formulae, or the way in which they are deduced, are known. 
In the first octant the direct generalisation of ellipsoid (9) is the Lamé surface 
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 1
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The significance of the restricting inequalities for coordinates x, y, z is evident: It is 
necessary to define their p-powers. The significance of the inequality for exponent p will 
become clear further on. Only in this remark we admit p > 0: if p = 1, we obtain a plane 
(more exactly: its triangle in the first quadrant); if p ✟ 0, it is evident that surface (13) 
transforms into 3 faces of a rectangular parallelepiped (in the first octant) the edges of 
which are in the coordinate axes; if p ✟ ✠, it is similarly seen that surface (13) transforms 
into the 3 remaining faces of that parallelepiped. 

The parametric representation of surface (13) reads 
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is the support function of our Lamé surface, relative to the origin. 
If we also extend the parametric representation to further octants, (14) would have to 

be modified as shown for 0 ★
✩

✪ ✪
✫

, ✬
✩

✪ ✪ ✩
✫

: 

 

1
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1
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px a
H

✭ ✮ ✯
✯ ✰ ✱
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and y and z remain without change. 
Eqs.(14) immediately indicate that parametric curve ✸ = const. lies in the plane 
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Hence parametric curves ✸ = const. form an analogue to the meridians of the ellipsoid 
of revolution. Point [0,0,c] of the Lamé surface is an unsubstantial singularity in 
parameters �, ✸. Parametric curve � = const. ✁ 0, ✂/2 is projected from the origin through 
the Lamé cone  

 
2 2 2 2 2 2

2 2 2 2 2 2
0

cos cos sin

p p p

p p p

x y z

a b c✄ ✄

☎ ☎ ☎
✆ ✝

✄
✞ . 

The analogue with the parallels of the ellipsoid of revolution is by far not as close. 
In Section 3 for the Gaussian curvature of Lamé surface (13) we obtain the formula  

 
✟ ✠

✟ ✠

2
2 41 p

p p p

p
K xyz H

a b c

✡✝
✞ , (16) 

with x, y, z from (14) and with H from (15). Eq.(16) also shows the reason for our 
restriction p ☛ 2; if 0 < p < 2, if x ☞ 0 or y ☞ 0 or z ☞ 0, then K ☞ ✌, i.e. a singularity 
would occur. 

Equations and formulae (13)✳(16) are generalisations (from the Lamé curve to the 
Lamé surface) of equations and formulae (5)✳(8) and generalisation (from ellipsoid to the 
Lamé surface) of equations and formulae (9)✳(12) too. 

In Section 3 we find an equation for the principal curvatures of the Lamé surface and 
formulae for its Gaussian curvature K. In Section 4 we calculate components b11, 
b12 = b21, b22 of the second fundamental tensor and its discriminant 

 11 122

21 22

b b
B

b b
✞ . (17) 

In Section 5 we examine component a12 = a21 of the first fundamental tensor and its 
discriminant (a11, a22 are unmixed components) 

 11 122

21 22

a a
A

a a
✞ . (18) 

From differential geometry we know that  

 
2

2

B
K

A
✲ . (19) 

Burša and P✍✎ (1993) and Burša and Kostelecký (1999) work with these tensors. 
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3. GAUSSIAN CURVATURE OF THE LAMÉ SURFACE 

Let the partial derivatives of the second order of function F(x,y,z) in the first octant be 
continuous and 

 . (20) 2 2 2 2 0x y zF F F� ✁ ✂ ✂ ✄

On the surface with equation 

 ☎ ✆, , 0F x y z ✝  (21) 

let us denote the principal curvatures as 11 R  and 21 R . These curvatures are the roots of 

equation 

 0

0

xx xy xz xR

yx yy yz yR

zx zy zz zR

x y z
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F F F

✞

✞

✞

✟

✟
✠

✟
, (22) 

(see Kommerell (1896), Kommerell and Kommerell (1903), Staude (1910); this equation 
has been omitted in contemporary books on metric differential geometry). 

For Lamé surface (13) 

 ✡ ☛, , 1 0
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✑ ✒ ✑ ✒ ✑ ✒
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is 

 1p
x p

p
F x

a

☎✠ , 1p
y p

p
F y

b
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b

✕✳
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✘ ✙ 21 p
zz p

p p
F

c
z ✕✳

✲  (25) 

 , , . (26) 0xyF ✝ 0yzF ✝ 0zxF ✚

We can see that ✛ = 0 if and only if x = y = z = 0. But due to (23) the origin is not a 
point of the Lamé surface, hence inequality (20) holds on it. 

In the case of (26), Eq.(22) is reduced as follows: 
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Hence - with respect to (20) -  
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For the Lamé surface, i.e. in cases (24) and (25), it holds firstly, also due to (14) 
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For Gaussian curvature K of the Lamé surface we thus obtain from (27) 

 
✡ ☛
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2
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p
K xyz H
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✛✣
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This is Eq.(16) mentioned earlier. 
From it follows immediately: Among our Lamé surfaces the ellipsoid is characterised 

by this property: the Gaussian curvature depends only on the support function, i. e. not on 
the product of coordinates xyz. The points of the Lamé surface in the coordinate planes 
(i.e. points having x = 0 or y = 0 or z = 0) are parabolic if p > 2 (if p = 2 elliptic on the 
ellipsoid). 

Gaussian curvature K from (28) can be simply geometrically interpreted. Let us 
construct the normal at point P[x,y,z] of the Lamé surface (13) and define its intersection 
Nxy with co-ordinate plane z = 0. We can easily determine that the distance of point P 
from intersection Nxy is  
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By cyclic permutation we obtain  
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Hence with respect to (28) 
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. 
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Similarly as we calculated and geometrically interpreted Gaussian curvature 

� ✁�1 21 1 ✁K R R✝ , we can also calculate and geometrically interpret mean curvature 

✂ ✄ ✂ ✄1 21 1R R☎ . 

4. SECOND FUNDAMENTAL TENSOR 

In Sections 4 and 5 we restrict ourselves to 0 < � < ✆/2, 0 < ✸ < ✆/2. 
Unit vector N  of the normal of Lamé surface (13) or (14) is 

 ✝cos cos ,cos sin ,sin ✞✟ ✠ ✟ ✠ ✟N . (29) 

The co-ordinates of radius vector ✡ ☛, ,x y zx  of the point of the considered surface are 

given in (14). 
The second fundamental tensor b☞✌ (✍, ✎ = 1, 2) is (see Burša and P✏✑ (1993), Burša 

and Kostelecký (1994) - geodetical literature is referred to, and not the extensive 
mathematical literature) purposefully 
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✒ ✒
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We substitute into (30) for x  and N  from (14) and (29). After some algebra (which 

requires full attention with respect to handling the exponents) we obtain 
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With the same diligence we calculate discriminant B2 from (17), using (15) in 
conclusion:  

 
� ✁

� ✁
� ✁

2 2 21
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✞
. (32) 

5. FIRST FUNDAMENTAL TENSOR 

The first fundamental tensor is derived from radius vector x  with coordinates (14): 
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The calculation of these scalar products is a technically complicated operation. It is not 
reproduced here, but only the result for a12 = a21 is given: 
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If 0 < ✓ < ✬/2, 0 < ✔ < ✬/2, then in the formula for a12 = a21 the first line is positive 
and the same holds for the factor in brace brackets ✭ ✮✯  on the third, fourth and fifth lines. 

Hence a12 = a21 = 0 if, and only if the expression in square brackets ✰ ✱✲  on the second 

line is annulled: 
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This equation can be modified to read: 
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If (34) holds - and only in this case, then a12 = a21 = 0. But the geometrical 
significance of the annulment of the mixed component of the first fundamental tensor is 
well-known from differential geometry: This means that the parametric curves are 
orthogonal. 

Let us return to the mixed component b12 = b21 of the second fundamental tensor in 
(31). We can see that it is annulled if, and only if 

 
1 1

1 1 1 1cos sin cos sin 0
p p

p p p pa b� � � �✁ ✁ ✁ ✁✂ ✄ . 

Evidently this equation is equivalent to (33). The geometrical significance of the 
simultaneous annulment of the mixed components of the first and of the second tensors is 
known from differential geometry, too.This means that the parametric curves are lines of 
curvature (they have tangents in the direction of extreme normal curvatures). 

We can thus say that the parametric curve with � determined after (34) (we know that 
each parametric curve � = const. is a plane curve) is a line of curvature. It thus forms an 
analogue to any meridian of an ellipsoid of revolution. 

If we substitute into formula (16) ☎ (28) from (14), i.e. if we pass from coordinates x, 
y, z to parameters ✆, �, we obtain 

 
✝ ✞

✝ ✞

✝ ✞

2 2 2
1 1 1

1

2
1

cos cos sin cos sin
p p p
p p p

p
p

p
K H

abc
✟ ✟ ✟ ✠ ✠

✡ ☛ ☛
☛ ☛ ☛

☛

☞
✌ .  

We remind the reader of (19) and by means of (32) we arrive at  

 
2 4

2
2cos

B B
A

K ✟
✌ ✌ . (35) 

The known formulae of the differential geometry of surfaces (see Hlavatý, 1939; 

Kreyszig, 1991; Stoker, 1989) also yield relation 2 2A B K✄  directly. 

We begin with the Weingarten equations 

 12 12 11 22 11 12 12 11
2 2

a b a b a b a b

B B✆ ✆ �

✂ ✂✍ ✍
✄ ✎

✍ ✍

x N ✍

✍

N
, 

 22 12 12 22 12 12 22 11
2 2

a b a b a b a b

B B� ✆ �

✂ ✂✍ ✍
✄ ✎

✍ ✍

x N ✍

✍

N
 

(using the symbolics of the tensor calculus enables to write these relations more briefly 
and better arranged). In view of (29) 

 1
✆ ✆

✍ ✍
✏ ✄

✍ ✍

N N
, 0

✆ �

✍ ✍
✏ ✄

✍ ✍

N N
, 2cos ✆

� �

✍ ✍
✏ ✄

✍ ✍

N N
. 
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The scalar product of the above-mentioned equations with �✁ ✁N  and ✂✁ ✁N , with 

respect to (30), yield  

 12 12 11 22
11 2

a b a b
b

B

☞
✌ , 211 12 12 11

12 2
cos

a b a b
b

B
✄

☞
✌ , 

 22 12 12 22
21 2

a b a b
b

B

☞
✌ , 212 12 22 11

22 2
cos

a b a b
b

B
✄

☞
✌ . 

We can easily check by multiplication that 

 ☎ ✆☎ ✆

2 2
2 2

11 22 12 21 11 22 12 21 11 22 12 214 2

cos
cos

A
B b b b b a a a a b b b b

B B

✆
✆✄ ✂ ✄ ✂ ✂ ✄ , 

hence (35) again. 

6. CONCLUSIONS 

Baeschlin (1948, p.27) wrote (in German): The Earth’s ellipsoid proved as a flattend 
rotational ellipsoid in so great approximation that today is no matter for practisising any 
geodetic calculation on the triaxial ellipsoid. The mean square error of the today 
numerically found ellipticity of the Earth’s equator is greater than this value itself. 

After approximately 50 years, Burša et al. (1993,1999,2001) work with the triaxial 
ellipsoid. 

Should the possibility appear, after several decades again to substitute the triaxial 
ellipsoid by a more suitable reference surface, the Lamé surfaces close to the triaxial 
ellipsoid (i.e. for p > 2 close to 2), would be eligible. 
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