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ABSTRACT: The solubility of disodium oxalate is important to many industries. This
study compiled and statistically assessed the disodium oxalate solubility data available
between 273 and 373 K. Sixty-six measurements were found from 19 studies. Two
additional studies published their data graphically. The solubility was found to be an
approximately linear function of the temperature, increasing about 0.0027 mol/kg per K.
The coefficient of determination (R2) of a linear fit to the data was 0.98. The mean
measured solubility at 298.15 K was 0.274 mol/kg, with a standard error of 0.0026, with
good agreement across data sets. The data were compared to calculated solubilities using a
previously published thermodynamic model and shown to have reasonable agreement. The
solubility of disodium oxalate was less than other alkali oxalates. Oxalate has a −2 charge,
or −0.5 charge per oxygen, and an average bond valence of −0.17 per coordinating cation.
Disodium oxalate is less soluble than other alkali oxalates because Na+ has a more closely
matching opposite bond valence (0.16) than do other alkali cations. This is consistent with
Brown’s theory that the most stable solids are those where cation and anions have matching opposite bond valence without having to
adjust to uncommon bond lengths or coordination numbers.

■ INTRODUCTION
Disodium oxalate (Na2C2O4; CAS 62-76-0) is important to
many chemical industries. Oxalate is used industrially for rare
earth and actinide processing.1−6 The solubility of disodium
oxalate is thus required to develop flowsheets for those
processes. In nature, disodium oxalate is called natroxalate, and
its solubility can influence the fate of oxalate in sedimentary
environments.7,8

Many large organics degrade into oxalates in high pH
aqueous solutions. Consequently, industries with organics in
high pH solutions often have oxalate as an impurity. These
industries include pulp and paper as well as the Bayer alumina
refining process. Disodium oxalate can be at high enough
concentration in those processes to cause process upsets.9−13

The solubility of disodium oxalate is not only of interest to
industries that use it but is also an input to alternative analyses
for reagent selection. For instance, recent hydrometallurgical
process development teams chose to use dipotassium oxalate
as a reagent instead of disodium oxalate because of the higher
solubility of dipotassium oxalate.14,15

The impetus for the present study is to better understand
oxalate behavior in alkaline nuclear waste at sites such as
Hanford and Savannah River in the United States. The
Hanford Site maintains an inventory of nuclear waste
constituents in a database called the Tank Waste Inventory
Network System. That database indicates that there is about
1.4 million kilograms of oxalate in the waste tanks at Hanford.
This equates to 16 million moles of oxalate. Oxalate is found in
these wastes in both the liquid and as solid disodium

oxalate.16−18 Oxalate was generated as a reaction product of
a nitric acid destruction process using sugar.20 Oxalate was also
generated from the degradation of larger organics in the
waste.21−25 Oxalic acid was used to clean out nearly empty
tanks in the past, where the subsequent neutralization created
disodium oxalate.26,27 Given that oxalate occurs in both the
solid and liquid phases in nuclear waste, the solubility of
disodium oxalate is of interest.28

The Hanford Site has developed models of the solubility of
disodium oxalate and other salts.29−32 The present authors are
collecting and assessing the literature data to support model
updates. The only common reference book we found
containing the solubility of disodium oxalate in water over a
large temperature range was the 1985 edition of Lange’s
Handbook of Chemistry, but that data was removed by the
1999 edition.33,34 We are therefore sharing our review of the
literature data on disodium oxalate solubility with the scientific
community here. The data are compiled and statistically
assessed. This study compliments existing reviews of the
dissociation constants of oxalic acid as well as reviews of the
solubility of other salts relevant to Hanford waste.35−39 This
study also compliments a recent study on the solubility trends
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of salts in multicomponent solutions simulating nuclear
waste.40

The Hanford Site has been using a solubility model based on
Pitzer’s equations for liquid phase activities (eqs 1 and 2).41 In
those equations, m is the molality of ion, γi is the activity
coefficient, γiDH is the modified form of the Debye−Huckel
activity coefficient, I is ionic strength, B0 and B1 are binary
Pitzer parameters for each pair of ions, and Cijk is another
binary Pitzer parameter that is usually taken to be independent
of ionic strength. The α parameter is a universal constant.41

= + + + ···B I m C m mln ln ( )i i ij j
j k

ijk j k
DH

(1)

= +B B B Iexp( )ij 0 1
0.5

(2)

■ DATA REVIEW
Given the industrial interest in disodium oxalate solubility,
many researchers have studied oxalate solubility between 273
and 373.15 K (Table 1). Table 1 contains the data found in an
extensive literature review; 66 unique data points from 19
different studies. There is one nonunique data point in Table 1
from two papers by Foote and Andrew,52,53 included here to

avoid future confusion. Foote and Andrew reported the same
data point in two different studies in 1905,52,53 and those data
points should not be taken as two separate unique measure-
ments. Two additional studies reported their data only
graphically, and those data were not included in Table 1.61,62

Table 1 reports the data in the units reported by the original
authors but also converts the data to molality (moles per
kilogram of water; mol/kg). In two studies, the data were
originally reported in molarity units, but no density or water
content of the saturated solution is available to convert to mol/
kg.48,56 For those studies, the water contents were estimated
using the Laliberte-Cooper model,63 using the method of
Reynolds and Carter64 and the coefficients from the electronic
appendix of Lalibete.65 Lalibete developed those coefficients
based on the data from references,66,67 which were measured
below saturation. Consequently, the Laliberte-Cooper model
was slightly extrapolated to concentrations higher than those in
the measured data. The data converted with the Laliberte-
Cooper model are reported in Table 1 but were not used in the
computational analysis below. The value calculated at 298.15 K
for the Britton and Jarrett48 data point was exactly on the mean
solubility for this temperature discussed in the next section.

Table 1. Measurements of the Solubility of Disodium Oxalate in Water

ref
temp
(K)

Na2C2O4
solubility original units

solubility
(mol/kg)

42 273.15 2.62 wt % 0.201
43 273.15 2.71 wt % 0.208
44 273.15 0.210 mol salt/kg water 0.210
45 273.15 2.67 wt % 0.205
44 278.15 0.219 mol salt/kg water 0.219
45 283.15 2.95 wt % 0.227
47 288.15 3.1266 g/100 g water 0.233
47 288.15 3.1226 g/100 g water 0.233
47 288.15 3.1234 g/100 g water 0.233
47 288.15 3.1271 g/100 g water 0.233
44 288.15 0.243 mol salt/kg water 0.243
48 291.15 0.2400 mol/L 0.242*
47 293.15 3.3058 g/100 g water 0.247
47 293.15 3.3009 g/100 g water 0.246
47 293.15 3.3000 g/100 g water 0.246
44 293.15 0.263 mol salt/kg water 0.263
45 293.15 3.39 wt % 0.262
46 293.15 3.40 wt % 0.263
49 293.15 3.27 wt % 0.252
50 297.86 0.005 mol/mol water 0.278
51 298.15 0.2676 mol/L 0.270a

47 298.15 3.4779 g/100 g water 0.260
47 298.15 3.4758 g/100 g water 0.259
47 298.15 3.4725 g/100 g water 0.259
52 298.15 3.6 wt % 0.279b

53 298.15 3.6 wt % 0.279b

42 298.15 3.56 wt % 0.275
54 298.15 0.272 mol salt/kg water 0.272
54 298.15 0.265 mol salt/kg water 0.265
54 298.15 0.263 mol salt/kg water 0.263
43 298.15 3.60 wt % 0.279
43 298.15 3.60 wt % 0.279
55 298.15 3.47 wt % 0.268
56 298.15 0.278 mol/L 0.281a

44 298.15 0.270 mol salt/kg water 0.270

ref
temp
(K)

Na2C2O4
solubility original units

solubility
(mol/kg)

57 298.15 3.73 wt % 0.289
44 303.15 0.284 mol salt/kg water 0.284
45 303.15 3.76 wt % 0.292
44 308.15 0.301 mol salt/kg water 0.301
58 312.15 4.0 wt % 0.311
42 313.15 4.09 wt % 0.318
44 313.15 0.316 mol salt/kg water 0.316
44 313.15 4.04 wt % 0.314
44 318.15 0.326 mol salt/kg water 0.326
59 323.15 4.28 wt % 0.334
42 323.15 4.37 wt % 0.341
54 323.15 0.317 mol salt/kg water 0.317
54 323.15 0.344 mol salt/kg water 0.344
60 323.15 4.35 wt % 0.339
44 323.15 0.345 mol salt/kg water 0.345
45 323.15 4.34 wt % 0.339
57 323.15 4.54 wt % 0.355
58 325.15 4.4 wt % 0.343
44 328.15 0.355 mol salt/kg water 0.355
43 333.15 4.60 wt % 0.360
43 333.15 4.60 wt % 0.360
44 333.15 0.367 mol salt/kg water 0.367
45 333.15 4.60 wt % 0.360
54 343.15 0.385 mol salt/kg water 0.385
54 343.15 0.383 mol salt/kg water 0.383
45 343.15 4.91 wt % 0.385
60 348.15 5.22 wt % 0.411
43 353.15 5.30 wt % 0.418
45 353.15 5.24 wt % 0.413
45 363.15 5.55 wt % 0.439
45 372.78 5.85 wt % 0.464
aCalculated using water contents determined from the Laliberte-
Cooper Model (see text). bThese are a single measurement reported
in two separate publications and should not be taken as two unique
measurements.
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The value calculated for the Matyukha et al.56 data point was
somewhat higher than the mean at 0.281 mol/kg.

The solubility of disodium oxalate is an approximately linear
function of temperature (Figure 1). Most data were clustered

near the line. At 298.15 K, the solubility measurements range
between 0.259 and 0.289 mol/kg. At 323.15 K, the solubility
measurements range between 0.317 and 0.355 mol/kg.
However, if the highest and lowest concentrations at 323.15
K are removed, the range narrows to between 0.33 and 0.34
mol/kg.

■ COMPUTATIONAL ANALYSIS
A line was fit to the data in Table 1 using the linear regression
function in a Microsoft Excel 365 spreadsheet. Equation 3 is
the regression equation, where T is temperature in kelvin,
while a and b are empirically determined parameters:

= +aT bDisodium oxalate solubility, mol/kg (3)

The line is shown in Figure 1, and the regression statistics and
parameters are shown in Table 2. The high coefficient of

determination R2 (0.984) and the good fit shown graphically in
Figure 1 support the conclusion that the data are
approximately linear over this temperature range. The slope
of the line indicates that the solubility of disodium oxalate
increases by approximately 0.0027 mol/kg per K increase. Two
studies had many data points at different temperatures. Norris
reported measurements at ten temperatures between 273 and
372.78 K.45 Menczel et al. reported data at 12 temperatures
between 273.15 and 328.15 K.44 Together, these two studies
account for one-third of the data in Table 1. To be sure the

linear trend is not the result of bias from these two studies, eq
3 was also fit to all of the data excluding these two studies. The
regression statistics are listed in Table 2.

Figure 2 compares all the data minus Norris and Menczel
equation to the data from Menczel et al.,44 which are data not

used to develop this equation. There is a small bias in these
data, with the data on average being slightly higher than the
regression equation. Nonetheless, the agreement between the
linear model and the data is close.

Figure 3 compares the All Data Minus Norris and Menczel
equation to the data from Norris,45 which is data not used to

develop this equation. Norris45 reports ten data points between
273 and 373 K. The prediction of the Norris data is excellent.
Note that Norris45 provides the only two data points above
353 K. The regressing equation provides an excellent
prediction of Norris’ data points at 363 and 373 K even

Figure 1. Plot of disodium oxalate solubility as a function of the
temperature between 273 and 373 K.

Table 2. Parameters for eq 3 and Regression Statistics

parameter or
statistic all data

all data minus refs 44 and
45

a 0.002655 ± 4.3 × 10−05 0.002716 ± 7.2 × 10−05

b −0.52101 ± 0.001 −0.54044 ± 0.02
standard error 0.00782 0.009132
R2 0.984 0.973

Figure 2. Comparison of the regression equation called “All Data
Minus Norris and Menczel” with data from Menczel et al.44

Figure 3. Comparison of the regression equation called “All Data
Minus Norris and Menczel” with data from Norris.45
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though no data above 353 K was used to parametrize the
equation. These results indicate that large data sets from
Menczel et al.44 as well as Norris45 are consistent with the
other data in the data sets.

Of note is that both regression equations in Table 2 had
identical slopes. This shows that the two large data sets did not
bias the regression, and supports the conclusion that the
solubility of disodium oxalate increases 0.0027 mol/kg/K.

There is more data at 298.15 K than any other temperature.
The mean concentration of all of the measurements at 298.15
K is 0.274 mol/kg. The standard error for the solubility data at
298.15 K is 0.0026 mol/kg. When eq 1 is solved at 298.15 K
using the coefficients fit to all data, the disodium oxalate
solubility is 0.272 mol/kg, within the standard error of the
mean value.

In a previous study,29 the authors developed a model for the
solubility of disodium oxalate in water based solely on the data
in reference.45 Here it is tested against all of the data in Table
1. The Pitzer equations (eqs 1 and 2) were used to calculate
the solution phase activity coefficients, taken from ref 68. In
order to be consistent with the large number of thermody-
namic parameters from the references,68,69 the Gibbs free
energies at standard state (μ°) are calculated as reduced
chemical potentials (μ) per eq 4.

=
RTj

o

(4)

Here, R is the Universal Gas Constant. The μj values are
empirical functions of temperature (eq 5) where A, B, C, D,
and E are parameters shown in Table 3:

= + + +

+

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzT A B T T C

T T
D T

T

E T T

at ( )
1 1

ln

( )

j r
r r

2
r
2 (5)

The solubility of disodium oxalate was calculated using eqs
1, 2, 4, and 5 as described in ref 29 with the comparison to the
data in Table 1 shown in Figure 4. These results indicate that
there is reasonable agreement with the model with the data.

■ DISCUSSION
Solid disodium oxalate is monoclinic with a P2/c space
group.70,71 In Hanford waste, disodium oxalate displays a thin
needle morphology between 10 and 200 μm long.19 Many
other morphologies can be precipitated from aqueous solutions
in the presence of other ions.72 The oxalate ion forms a planar
structure (D2h space group) in solid disodium oxalate. Oxalate
is rotated into a D2d space group in aqueous solution because
of hydrogen bonding between water and oxalate.73

Dissolved oxalate forms weak ion-pairs with Na+, ion pairing
that likely influences the solubility of disodium oxalate.74−76

The strength of ion-pairing decreases with increasing ionic
strength.75 The reaction for the ion-pair is written:

++Na C O NaC O2 4
2

2 4
1

(6)

In dilute solutions, there are two water molecules in between
the Na+ and oxalate ions in the ion pair, called a two-solvent
shared ion-pair.76

With a formal charge of negative two, oxalate has a −0.5
charge per oxygen. Assuming that each oxalate oxygen is
coordinated by three cations on average, oxalate has an average
bond valence of −0.17 per coordinating cation.77 Gagne ́ and
Hawthorne determined that Na+ has an average bond valence
of 0.16, averaged over many crystal structures.78 Brown
indicates that stable structures are formed when the cation
and anion have nearly matching opposite bond valence,79 as is
the case here with Na+ and oxalate. Stable solids would expect
to have a low solubility in water and other solvents. The low
solubility of disodium oxalate may thus be because of the
excellent matching bond valence of the ions. What constitutes
“low solubility” is subjective, so it is quantified here by
comparing the solubility of disodium oxalate to that of other
alkali oxalates at 298 K. A recent study on monovalent cation
nitrates shows that the monovalent cations that most closely
matched nitrate’s bond valence had the lowest solubilities.80

While an in-depth evaluation of the solubility of other alkali
oxalates was not undertaken, Foote and Andrew reported the
solubility of lithium, potassium, and cesium oxalate at 298 K.52

Their measured concentration of disodium oxalate at 298.15 K
(0.279 mol/kg) agrees well with the mean concentration of
0.274 mol/kg determined here, suggesting that their measure-
ment of the solubility of other alkali oxalates was likely
reasonably accurate as well. Figure 5 plots the solubility of
disodium oxalate along with the solubility of other alkali
oxalates reported by Foote and Andrew against the bond
valence values for the alkali ions from Gagne ́ and
Hawthorne.52,78 The bond valence of sodium most closely
matches the bond valence of the oxalate oxygens, and it also

Table 3. Parameters for eq 5 for the Solids and Ions Used in This Study

constituent A B C D E ref

Na+ −105.73 0.85194 0 0 −0.000883 69
C2O4

−2 −272.165 2.782581 0 0 −0.002792 68
Na2C2O4 −489.4015 5.041464 37072.55 −247.939 −0.004768 29

Figure 4. Comparison of experimental data to thermodynamic model
from ref 29.
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has the lowest solubility (Figure 5). Lithium has the next
closest average bond valence of 0.21, and it has the next closest
solubility in water to that of disodium oxalate. Potassium and
cesium have bond valences much further from oxalate’s than
sodium and lithium and exhibit much larger solubilities (Figure
5). This is consistent with Brown’s theory79 that structures
with matching bond valences of the counterions will be the
most stable, here demonstrated using solubility data.

Sodium and lithium have the closest matching opposite
bond valence to oxalate, and they both crystallize as anhydrous
salts.70,71,81 Potassium and cesium have bond valences that
match poorly with oxalate, and both crystallize as hydrated
salts at 298 K with water partially separating the cation from
the oxalate.82−84 Hawthorne and Schindler85 indicate that salts
incorporate water into their crystal structure to moderate bond
valence differences between cation and anion, which was
verified for many oxalates by Echigo and Kimata.77 The two
hydrated salts in Figure 5 also had the highest solubility,
consistent with the relative instability of these alkali oxalates.
The anhydrous forms of cesium and potassium oxalates would
presumably be even more soluble in water, a hypothesis that
may not be testable because they have only been synthesized
when water is excluded.86

The Hanford Site currently plans to vitrify radioactive waste
solids into high-level waste glass.87 The Site plans to dissolve
nonradioactive soluble salts from the solids to minimize the
mass vitrified as high-level waste.88 Disodium oxalate is one of
the least soluble salts in the waste. As mentioned in the
Introduction, the Hanford Site has about 16 million moles of
oxalate in its radioactive waste storage tanks. It would require
58 million kilograms of water to dissolve this oxalate at 298 K.
Oxalate is readily destroyed in the melter if vitrified, but the
accompanying sodium decreases the durability of the glass
produced.89,90 Nonetheless, some sodium is needed to
condition the molten glass viscosity and electrical conductiv-
ity.91,92 Consequently, the amount of sodium sent to the
melter must be balanced for optimal treatment.87 The
solubility of disodium oxalate is thus an important input to
waste treatment flowsheets at Hanford.

■ CONCLUSIONS
The solubility data of disodium oxalate measured across 19
studies was highly consistent with each other. A regression
analysis of the data determined that nearly identical results
were obtained when a linear model was fit to the data with or
without two large data sets accounting for 1/3 of the data. This
indicates that these two large data sets and all the rest of the
data are consistent with each other. The mean solubility
measurement at 298.15 K was 0.274 mol/kg, and there was a
tight standard error around the mean of only 0.0026 mol/kg,
indicating that the true solubility at 298.15 K is likely very near
this mean value. When the regression equation was solved at
298.15 K, a solubility of 0.272 mol/kg was determined, which
was also supportive of the mean solubility at 298.15 being
approximately equal to the real solubility.

The solubility of disodium oxalate increased by approx-
imately 0.0027 mol/kg/K, with an error of only 4.3 × 10−05

mol/kg/K, indicating that there is high confidence in this
temperature dependence.

The solubility of disodium oxalate is low because of the
closely matching opposite bond valences of Na+ and oxalate.
This was shown by comparing the solubility of disodium
oxalate to other alkali oxalates, where disodium oxalate had the
lowest solubility and the most closely matching opposite bond
valence to oxalate. Matching bond valence analysis has been
used for many years to determine the stability of different
crystal structures. Here, it shown that matching bond valences
can be used to explain relative solubilities of different oxalate
salts.
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