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ABSTRACT
Gallium-based liquid metals show excellent thermal and 
electrical conductivities with low viscosity and non-toxicity. 
Their melting points are either lower than or close to room 
temperature, which endows them with additional advantages 
in comparison to the solid metals; for example, they are 
flexible, stretchable and reformable at room temperature. 
Recently, great improvements have been achieved in 
developing multifunctional devices by using Ga-based liquid 
metals, including actuators, flexible circuits, bio-devices 
and self-healing superconductors. Here, we review recent 
research progress on Gallium-based liquid metals, especially 
on the applications aspects. These applications are mainly 
based on the unique properties of liquid metals, including 
low melting point, flexible and stretchable mechanical 
properties, excellent electrical and thermal conductivities and 
biocompatibility.

Introduction

Metals are the most important and earth-abundant materials. Ninety-one of 
overall one hundred eighteen elements are metals. They generally exhibit good 
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electrical and thermal conductivity, excellent mechanical properties and unique 
chemical properties, which can be widely used in applications ranging from con-
ductive wires, thermal conductors, structural frames and pipes, to coatings, med-
icines and catalysts. Most of the metals are in the solid state at room temperature. 
Exceptions include francium (Fr), caesium (Cs), rubidium (Rb), mercury (Hg) 
and gallium (Ga), which can be defined as liquid metals. Their melting points are 
either lower than or close to room temperature, which enable them to remain in 
the liquid state at room temperature [1]. This brings them additional advantages 
in comparison with the other metals; for example, they are fluid, stretchable and 
reformable at room temperature [2]. Unfortunately, the intrinsic radioactivity of 
Cs, extreme instability of Fr and Rb and toxicity of Hg limit their applications to 
certain specific areas [1]. Ga, on the other hand, is a metalloid element, but it still 
shows metallic properties when it is in solid phase and becomes a superconduc-
tor at extremely low temperature [critical temperature Tc ≈ −272.06 °C (1.09 K)] 
[3]. Its high boiling point allows it to remain in the liquid phase from near room 
temperature to approximately 2403  °C [4]. It demonstrates great potential for 
common uses as a liquid metal to realise flexible, stretchable and self-healing 
electrical devices [2], although its melting point (29.7 °C) is still slightly higher 
than room temperature [4].

Recently, it was found that the Ga-based eutectic alloys, such Ga–Indium 
(EGaIn), Ga–Tin (EGaSn) and Ga–In–Sn (EGaInSn, Galinstan) systems show 
tunable melting temperatures from −19  °C to far above room temperature, 
depending upon their component ratio [5,6]. In addition, these alloys show typi-
cal metallic properties in contrast to the metalloid nature of Ga, even in the liquid 
phase. Owing to these unique properties, research on Ga-based liquid metals has 
attracted great attention and made several significant breakthroughs very recently. 
Here, we will review current progress on the exploration and development of 
Ga-based liquid metals and their properties. The novel applications based on 
these properties will be discussed.

Ga-based liquid metals

Ga was discovered in 1875. It is a relatively ideal liquid material to replace mer-
cury due to its low vapour pressure [2], low toxicity, low viscosity [7] and metallic 
electrical conductivity performance [2]. Its melting point, however, 29.7 °C [4], is 
slightly higher than room temperature [8]. In order to decrease its meting point, 
eutectic Ga alloys have been developed. Indium was the first element that was 
alloyed with Ga. The melting point of EGaIn can be tuned to as low as 15 °C when 
it is incorporated at 14 wt%, as shown in Figure 1 [5]. Later, Sn was introduced into 
EGaIn (Figure 2), and the alloy was denoted as EGaInSn. Its melting point can be 
decreased to −19 °C. Various liquid phases were identified and are summarised 
in the phase diagram, as shown in Figure 2 [6]. The tunable melting tempera-
tures of EGaIn and EGaInSn represent one of the most significant steps toward 
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application of Ga-based alloys as liquid metals. Note that corrosive property of 
Ga towards almost all the metals [9] (except Tungsten (W) and Tantalum (Ta)) 
has to be considered before using EGaIn and EGaInSn in devices. Most of the 

Figure 1. Phase diagram of eutectic gallium–indium [5].

Figure 2. Eutectic gallium–indium–tin phase diagram [6].
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liquid-metal-based flexible and stretchable devices have had to be sealed properly 
in polymer frames or channels [10]. Chemical passivation is an intrinsic property 
of Ga that enables Ga and Ga-based alloys to be used as dielectrics, although it 
also hinders their general use as liquid conductors. The surfaces of pure Ga or 
eutectic Ga-based alloys are easily oxidised and form an amorphous Ga oxide 
layer in the ambient environment that decreases the surface tension of the liquid 
metal [11–13]. The thickness of the intrinsically formed Ga oxide surface layer is 
0.5–3 nm [14–16]. Nevertheless, the thickness of the oxide layer can be modulated 
by using an electrochemical method. Consequently, the dielectric functions of Ga 
and the eutectic Ga alloys can be tuned from 1.24 to 3.1 eV at room temperature. 
For the purpose of electric applications, the surface oxide layer can be eliminated 
by applying an electrochemically reductive potential or simply removed by diluted 
acids/strong alkaline media [17].

Properties and applications of gallium-based liquid metal

The good electrical and thermal properties and the unique mechanical, fluidic and 
surface properties of Ga-based liquid metal offer great potential for applications 
in functional electronics, flexible devices, actuators and bio-devices. There are 
now several excellent reviews covering applications of liquid metal on different 
specific properties [1,8,11,15,16]. Here, we will cover the current progress on the 
main advantaged properties of Ga-based liquid metal and the applications derived 
from these advantages.

Electrical properties and applications

The resistance of Ga is higher than that of copper, but the conductivity of Ga-based 
liquid metal is much higher than for other liquids. The conductivity of Ga in the 
solid state is poorer than in the liquid state [18]. C. Dodd have measured the resis-
tivity of Ga (Figure 3), the variation of resistivity with temperature is linear [19].

High electrical conductivity electronics at room temperature
With the benefit of their excellent electric conductivity, Ga-based liquid metals 
combine the performance of metallic with fluidic properties [20]. They can be 
injected into micro-channels at room temperature to make flexible electronic com-
ponents, such as antennas. Dickey et al. reported a procedure to fabricate reversibly 
tunable fluidic antennas (Figure 4) [21]. They utilised photolithography to make a 
pattern for the dipole on (polydimethylsiloxane) (PDMS) layer on a silicon slide. 
After exposure of this substrate to oxygen, the substrate was sealed to generate 
micro-channel, and then liquid metal was injected into the microfluidic channels 
to form the antenna. The resonance of antenna is approximately 1962 MHz, and 
the radiation efficiency is 90% in far field measurements. (Efficiency of 100% 
means that the antenna has no losses.) Thus, the electrical loss of EGaIn antennas 
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Figure 3. Temperature coefficient of resistance of Ga, reproduced from [19].

Figure 4. The process of dipole antenna fabrication. (a) PDMS elastomer patterned on substrate. 
(b) The PDMS channels are sealed. (c) Liquid metal is injected into the microchannels to make a 
dipole antenna [21].
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is acceptable in applications. The novel antennas provide a simple way to fabricate 
components, including electronic fabric [21].

Superconductive electronics at low temperature
A superconductor is a type of material that shows zero electrical resistance and the 
Meissner effect, when the temperature is below a certain critical temperature (Tc). 
Conventional superconductors have some drawbacks, for example, they are fragile 
and subject to processing difficulties. The superconducting transition temperature 
of pure Ga is lower than −268.95 °C (4.2 K) [3], the boiling temperature of helium. 
This is a barrier to practical applications of this material as a superconductor. Ren 
et al. found that the superconducting transition temperature for GaInSn alloy can 
be tuned by the component ratio [22]. The highest Tc in this family is −266.55 °C 
(6.6 K), which is higher than liquid helium temperature. It was found that liquid 
metal nanoparticles also retained the same superconductive properties as their 
bulk material. (Figure 5) [22]. These nanoparticles were dispersed into aqueous 
solution with organic dispersants (surfactants). A superconducting ink can be 
then developed by using such the dispersive nanoparticles, which can be directly 
used for inkjet printing. The micro-/nano-circuits have been printed by such inks, 
which displays mechanical flexibility and superconducting properties. This work 
indicates that liquid metal superconductor may be used for microscale nuclear 
magnetic resonance (NMR), micro-/nano-superconducting coils, flexible super-
conducting electronic components and other applications [22].

Figure 5. (a) Superconducting transition temperature for EGaInSn bulk materials and nanoparticles, 
with the inset showing an enlargement of the transition. (b) Temperature dependence of the 
magnetisation of EGaInSn nanodroplets; the inset schematic illustrations show that the EGaInSn 
nanodroplet would make the transition to crystalline from amorphous as the temperature 
decreases from room temperature (300 K) to T* (133 K, the fully crystalline temperature point 
of EGaInSn nanodroplets (NDs)). The amorphous and then the crystalline EGaInSn nanodroplet 
remains paramagnetic when the temperature is above the Tc (≈6.6 K), but the crystalline EGaInSn 
nanodroplet will change to diamagnetic when the temperature falls below Tc (≈6.6 K) due to the 
Meissner effect [22].
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Thermal properties and applications

Similar to most metallic materials, Ga and its alloys also show high thermal con-
ductivity [13]. The thermal conductivity of pure Ga is 28.7 kcal/m•h•°C, which is 
much higher than the thermal conductivity of air or water [23]. Furthermore, the 
liquidity and high thermal conductivity of Ga-based liquid metals allows them 
to be used as coolant agents for several applications, such as microdevices [24].

Coolant
Heat dissipation management is important for cooling the compact electronic 
packages including central processing unit (CPU) in computers [23]. The evolution 
of micro/nano-devices has significantly enhanced the capability of liquid cooling 
systems. Traditionally, water and aqueous solutions are utilised as coolant, but 
their low thermal conductivity reduces the effectiveness of heat dissipation. As an 
alternative, Ga-based liquid metal coolants were developed in recent years, owing 

Figure 6. (a–d) Schematics for liquid metal cooling experiment system. (a) Exploded image. (b) 
Image of Serpentine shaped microheater. (c) Schematic of cooling system assembling. (b) Close- 
up image of EGaInSn marble is placed onto the hot spot. (e–j) Sequential snapshots display the 
alterations of temperature with respect to time [26].
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to their intrinsic liquidity and high thermal conductivity [25]. Khoshmanesh et al. 
designed an integrated liquid cooling system by utilising a small droplet of liquid 
metal Galinstan (commercial GaInSn alloy) [26]. Figure 6(a)–(c) schematically 
displays an image of this liquid metal-based cooling system. The device facilitates 
the effective delivery of heat from resistive heater into the stream of liquid by 
the circulated and high thermal conductive liquid metal droplet in the cooling 
solution. Sequential snapshots presented in Figure 6(d)–(i) show the variations of 
temperature of the cooling channel with respect to time. The graphs clearly show 
the non-uniform distribution of temperature along the cooling channel, before 
actuating the liquid metal droplet (t = 0 s). Upon application of a square wave 
dc signal, the liquid meal droplet serves as a pump, driving the coolant medium 
through the cooling channel [26].

Mechanical and fluidic properties and applications

Ga and its alloys show passivation behaviour with the formation of a surface oxide 
layer when exposed in air. The oxide skin (0.5–3 nm thick) arising from intrinsic 
passivation further promotes the chemical and mechanical stability of the liquid 
metals [27,28], and in particular, it leads to non-Newtonian fluidic performance 
[2]. The mechanical properties cannot be changed because the Ga-based liquid 
metals are in the liquid phase around room temperature [16].

Flexible and stretchable electronics
Flexible and stretchable electronics have components and circuits that can retain 
their function while being deformed. Conventional flexible electronics are made 
of rigid materials, for example aluminium (Al) and copper (Cu). They could be 
rendered flexible by making them sufficiently thin [8]. The flexibility of these clas-
sical solid antennas electronics is not adequate, however, since they could be still 
damaged by metal fatigue and the conductivity of the electronic systems might be 
influenced. Due to its liquid form at room temperature, Hg has been considered 
for application in flexible electronics, but its toxicity is a huge barrier to this. The 
large surface tension of Hg is too high, which may not allow spontaneous recovery 
deformation. In contrast, Ga and its alloys avoid the toxicity problem, and the 
oxide skin provides mechanical stability to Ga-based liquid metal [29], which is 
significant for conformal and flexible electronics. Owning to the intrinsic liquid 
property at room temperature, Ga-based liquid metal can be reshaped easily while 
remains metallic function. Thus, it can be injected into stretchable channels [30]. 
Hayes et al. developed a flexible multi-layer antenna, which was constructed by 
liquid metal (EGaIn) injecting into the microstrip. This antenna can be flexed 
without any great change in function (Figure 7(a) and (b)) [31]. It could be also 
used to make a conductor with excellent mechanical performance [8]. As shown 
in Figure 7(c) and (d), Zhu et al. fabricated a stretchable liquid metal conductive 
fibre which could be stretched to 600% without any loss of conductivity, and 
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800% could be achieved before breaking [30]. Even though the conductivities 
of Ga and its alloys are lower than for Cu, these materials are acceptable due to 
their additional advantages, including stretchability, flexibility and deformation 
[8]. Ga-based liquid metals have also demonstrated the potential to be utilised in 
diffraction gratings [32], metamaterials [33], etc.

Self-healing devices
Self-healing wires can improve the durability of many electronic devices, especially 
for stretchable electronics [34–37]. In addition to that, self-healing wires create a 
novel approach to the rewiring of circuits, as they offer a simple way to reconfig-
ure micro-channels, which be set in complex shapes and systems. Traditionally, 
conductive polymers have been used as self-healing conductive materials [38–41], 
although those materials could only self-heal at high-temperature (~200 °C). The 

Figure 7. Images of a liquid metal-based flexible and stretchable electronic device. (a–b) Flexible 
microstrip patch antenna made from liquid metal [31]. (c–d) An EGaIn wire can be stretched by 
800% [30].



420   ﻿ G. BO ET AL.

conductivity of the polymers is much worse than for metals [42]. Ga-based Liquid 
metals can solve these problems. Li et al. created a light emitting diode (LED) 
integrated EGaInSn circuit. In this self-healing device, the liquid metal wire can 
be cut by shears, and then heals by itself under ambient conditions without an 
additional force to reconnect the broken wire. [43] Palleau et al. also fabricated 
self-healing stretchable circuits by using Ga-based liquid metal [10]. The wires 
are fabricated in self-healing polymer micro-channels, which are injected with 
liquid metal (EGaIn). The circuits can self-heal, not only mechanically, but also 
electrically after being cut. Figure 8(d)–(f) shows the self-healing procedure for 
the stretchable wire in the above work. Initially, a LED, a wire and a voltage power 
supply form a circuit (Figure 8(d)), it was cut into two pieces (Figure 8(e)), then the 
oxide skin forms rapidly. The oxide skin precludes the liquid metal from returning 
into the microfluidic channels. Moreover, the oxide layer helps EGaIn adhere to 
polymer. This stretchable property may be useful in the field of stretchable elec-
tronic and reconfigurable circuit fabrication [10].

Reconfigurable filter and antenna
Traditional microstrip filters are made using printed circuit board technology 
[44,45], which methods often used is etching the pattern on stacked copper 
sheets [38]. Alteration of the electrical length of the stub and response of the 
filter, however, require a number of steps and approaches, for instance, using the 
incorporation of varactors to bridge the disconnected part of the stub [39]. In 
contrast, Khan et al. demonstrated a simple way to fabricate tunable filters, which 
combines an insulated soft polymer and conductive liquid metal that can respond 
to an electrical signal when there is sufficient pressure (Figure 9(a)) [38]. Based 

Figure 8. (a–c) Images show the self-healing of a galinstan circuit integrated with a LED [43]. (d–f) 
Schematic diagrams showing the disconnection and reconnection of a simple electronic circuit 
using a self-healing wire [10].
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Figure 9.  Image of bandstop filter. (a) Geometry of bandstop filter with a 50 Ω microstrip 
transmission line from Port 1 to Port 2 and an open stub section. (b) Measured and simulated 
transmission coefficient response for each state of the microstrip filter. The frequency of the filter 
becomes lower with increasing stub length. (c) Measured transmission coefficient of a prototype 
with an open stub shortened from 22.7 to 0.5 mm [38].
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on typical transmission coefficient measurements and simulations relative to the 
resonant frequency, Figure 9(b) illustrates that the resonant frequency would 
decrease with increasing stub length (relative to the pressure). More importantly, 
the mechanical stability arising from the oxide skin of the liquid metal gives this 
bandstop filter the ability to operate reversibly. This technology can also be applied 
in wearable devices [38].

A reconfigurable antenna is also a specific type of electronics, which supports 
dynamic control of its frequency and shape [40]. Most conventional antennas fail 
to enable reconfiguration without any additional components [41,46,47]. Khan 
et al. designed a novel frequency shifting antenna fabricated from liquid metal 
alloys (Figure 10) [48]. In details, the innermost two segments and outermost 

Figure 10. Schematic illustration of reconfigurable antenna. The shape reconfigurable antenna 
can be changed by pressure. (a) The empty microfluidic channels with inlet holes. (b) The antenna 
is separated by rows of posts. (c) Liquid metal has been injected into the microchannels. Initially, 
the metal does not flow until the pressure exceeds the critical pressure. (d) The four sections of 
metal merge into two longer sections (each of length L2), which lowers the resonant frequency 
[48].
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two segments are separated by two post rows. Then, the EGaIn liquid metal is 
injected into inlet holes, and it fills into channels easily. When the pressure exceeds 
a critical value, the innermost and outermost segments are merged by the flowing 
liquid conductive material. The shape, electrical length and frequency could be 
all changed and controlled by the flowing liquid metal. The liquid metal-based 
antenna successfully responds to an external stimulus without external switches 
[48].

Surface tension and wettability

The oxide skin of Ga allows Ga-based liquid metal to wet other surfaces. The 
oxide layer shows elastic layer which can support the maximum surface stress of 
0.5 – 0.6 N•m−1. When it is broken, it reforms instantaneously and rapidly under 
oxygenated conditions [16]. Moreover, the surface tension of Ga is large than 
400 mN•m−1 [13], the oxide layer not only lower the surface tension of Ga-based 
liquid metal, but also helps to remain the shape of Ga-based liquid metal and keep 
stable after injection [49]. As the surface or interface tension and wettability can 
be changed or controlled by electric-induced effect (including electrocapillarity, 
continuous electrowetting (CEW) and electrowetting on dielectric (EWOD)), the 
Ga-based liquid metal has been manipulated by applied the external electric field 
in different liquid-related system. Besides, the surface tension of Ga-based liquid 
metal can be also affected by modification of the liquid electrolyte surrounding 
it, which has been demonstrated as an effective way to actuate liquid metal drop-
lets. Regardless of the applied different external fields, the liquid metal driving 
mechanism could be attributed to the changes of electrical double layer forming 
on the liquid droplet surface. Placing Ga-based liquid metal in the electrolyte, 
according to the Stern’s electrical double layer (EDL) theory, two ion layers with 
opposite charges and equal electrical quantity would exist in the interface between 
the electrolyte and liquid metal to form an EDL as interface capacitor that stores 
electric energy. When applying a driving force, such as electrical field, magnetic 
field and the electrolyte ionic imbalance, the charge symmetry that exists on the 
surface of a liquid metal would be broken. It causes the surface tension gradient 
of the liquid metal droplet in electrolyte medium and generates a differential 
pressure. As a result, the liquid metal moves or deforms [50–52].

Actuator and pump
Actuator and Pump is a type of devices that transfer non-mechanical external 
energy to mechanical energy [53,54]. Gough et al. studied about the electrocap-
illary actuation of EGaInSn marble [54]. The external voltage was applied across 
the EGaInSn–electrolyte surface directly to create interfacial tension gradient 
making the pressure between electrolyte and droplets imbalance. This approach 
can be utilised to control the liquid metal flow in complex channels. However, 
the shape of liquid metal cannot be controlled stably due to the surface tension is 
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very high. In recent years, Hu et al. reported a method to solve this problem [55]. 
They developed a system placing liquid metal marble in an alkaline electrolyte, 
the droplet on the graphite surface can transformed to a flat and dull puddle 
with applied voltage in the electrolyte. Therefore, the liquid metal puddle can be 
controlled into various stable shapes due to the interactions between graphite and 
liquid metal. Figure 11 (a) and (b) displays a scheme for the experiment [55]. It 
demonstrates that the liquid metal droplet elongated and moved toward cathode 
with the tail-like rear when both of the cathode and anode are fixed, and external 
electric field be applied. This approach provides a novel method for soft device 
manufacture and offers a way to explore electrochemical performance of liquid 
metal [55]. In addition to using conductive electrolyte, Holcomb et al. intro-
duce a technique to actuate liquid metal that uses acidification of nonconductive 
siloxanes to remove and prevent oxidation of liquid metal [56]. The siloxane oil 

Figure 11.  (a) The transformation of liquid metal marble on graphite connecting an external 
voltage directly with an electrode. Both of the cathode and anode are fixed and installed relatively 
far away from liquid metal, the marble stretched and moved toward cathode, the shape of liquid 
metal likes a tail. (b) The sequential snapshot for the directional locomotion of liquid metal in 
NaOH. The inset shows the transient displacements of head and rear of two sized liquid metal 
droplets. (The diameter of liquid metal droplet 1 is 8.5  mm and droplet 2 is 9.6  mm) [55]. (c) 
Schematic displays illustration of the procedure of for electrowetting on dielectric. It is with a 
graph showing the relationship of between the contact angle and the applied electrical potential. 
(d) Images of a switchable wire-grid polarizer device. The liquid metal is in the form of droplets 
when no electric potential is applied. When the bias is applied, the liquid metal changes to line 
shapes [56].
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combines hydrochloric acid with hydrobromic acid, which is chemically stable 
and can promote better electrowetting. This approach offers new opportunities 
to fabricate devices for applications of liquid metal. Figure 11(c) shows the pro-
cedure for electrowetting on dielectric for gallium alloys in the HCl siloxane with 
about 0.135 M HCl. The liquid metal is surrounded by insulating material on an 
electrode which is separated by a dielectric layer. The contact angle was expected 
to be 180° without voltage, but it was measured to be 160° due to the influence 
of gravity and other factors. When bias was applied, the contact angle changed 
to nearly 120° at 300 V [56]. Figure 11(d) shows a switchable wire-grid polariser 
system, which is one application for this concept. Liquid metal is in the form of 
droplets with no applied voltage. When a bias is applied, the liquid metal changes 
to a line shape [56]. EWOD is a novel method that provides many benefits, includ-
ing easy fabrication and no moving parts.

Strategies other than electrical filed have been also developed to actuate liq-
uid metal, Zavabeti et al. showed an novel approach that only utilises the ionic 
imbalance of aqueous electrolyte surrounding the liquid metal [57]. The PH and 
ionic concentration gradients across liquid metal are significant factors for liq-
uid metal actuation. Figure 12(a) and (b) shows the PH imbalance induced the 
pressure imbalance on two sides of liquid metal droplet, thus, liquid metal drop-
let moves from HCl (high surface tension) side to NaOH (low surface tension) 
side. Therefore, ionic properties for electrolytes contain enough energy to induce 
the liquid metal marble movement, the marble can move without electric field. 
The outcomes of this work can be utilised to fabricate future autonomous low 
dimensional micromechanical components which are based on the changes of 
compositional of electrolytes [57].

Figure 12. (a) Schematic of surface tension (b) Liquid metal droplet moves from 1.2 mol/L HCl to 
0.6 mol/L NaOH [57].
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In addition to those simple actuation systems, Tang et al. designed a ‘liquid 
metal enabled pump’ system [58]. In this system, EGaInSn is the core of pump to 
transfer electrical energy to mechanical energy. Figure 13(a) shows the schematic 
of experiment system. The EGaInSn droplet was placed in the polymethylmeth-
acrylate (PMMA) channel, sodium hydroxide solution was electrolyte. Figure 
13(b) shows the electric double layer on the interfacial of gallium and electrolyte. 
Figure 13(c) displays the charge distribution of EGaInSn droplet when applied 
bias. Electrowetting at the surface of liquid metal droplet can enabled this pump 
when the dynamic electric field is applied. The pump offers various benefits, such 
as it can arrive to high flow rates under low power consumption, simple con-
trolling, no moving parts and low cost [58]. Furthermore, this pump has the 
potential to enable applications.

Khoshmanesh et al. utilised a pair of liquid metal pumps which made by 
EGaInSn droplets to provide controllable vortices within a small liquid chamber. 
Figure 14(a) shows EGaInSn droplet was injected into channel, then the droplet 
deformed after activation (Figure 14(b)). Numerical simulations predict the small 

Figure 13. Principle of the liquid metal enabled pump. (a) Schematic diagram of the system. (b) 
Schematic illustration of the charge distribution of EGaInSn droplets without bias. (c) Schematic 
illustration of the charge distribution on the EGaInSn droplet when electric field is applied [58].
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and large vortices nearby each droplet (Figure 14(c)). The simplified theoretical 
model was shown in Figure 14(d). In order to understand the influence for droplet 
intrusion on the pumping characteristic of droplets, Khoshmanesh et al. designed 
a plan which use different size of orifice [59]. As a result, the small orifice causes a 
local vortex close to the droplets (Figure 14(e)), the reference orifice causes a large 
orifice embracing the whole liquid chamber (Figure 14(f)), the large orifice causes 
complete intrusion of one of the droplets into the liquid chamber (Figure 14(g)). 
They demonstrated the utility of liquid metal pumps to create customised spati-
otemporal temperature profiles into a liquid chamber [59]. They use liquid metal 
enabled pumps inducing vortices inside a liquid chamber. This method is an 
excellent way to generate spatial temperature gradients by altering the rotational 
velocity and configuration of vortices, which can be controlled by changing the fre-
quency and polarity. This approach replaced the method of using acousto thermal 
[11,57] or microwave-induced heating, it means that the system does not require 
a lot of hot spots [13] or localised hot spots for heating in the liquid. These pumps 
can generate more complex temperature profiles and gradients [59].

Transformation
As Ga-based liquid metals have mechanical stability, they can be transformed 
into different shapes around room temperature by utilising various applied forces 
[20,60,61]. Khan et al. introduced the oxide layer of liquid metal can be formed 
and withdrawn by low voltages [62]. Figure 15 displays the electrocapillarity-in-
duced liquid metal removal from micro channels. It demonstrates that the oxide 
skin is an excellent surfactant for metals, and liquid metal can be removed and 

Figure 14.  (a) Image showing liquid metal droplet injected into the liquid chamber before 
activation. (b) Image of EGaInSn droplet in liquid chamber after activation. (c)Image from 
numerical simulation. (d) Schematic diagram of liquid metal enabled vortex generator. (e–g) 
Properties of vortices in response to small, reference, and large orifices connecting the electrode 
channels to the liquid chamber [59].
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transformed quickly and reversibly. Based on these merits, a wide range of appli-
cations can be developed, such as microelectromechanical systems (MEMS) 
switches and conductive microcomponents [62]. Tokuda et al. demonstrated 
novel manipulation of liquid metal with a vision to expand the work on shape 
changing, programmable material and consider its use as a method for providing 
a programmable electric circuit [63]. Figure 16 shows work mechanism for liquid 
metal deformation, and the liquid metal can deform in a desired shape by adjusting 
the voltages among the electrode array. These techniques provide a new platform 
to realise novel manipulation and detailed 2D control of liquid metals under a 
programmable electric circuit [63].

Patterning
Ga and its alloys provide a wide range of advantages for microscale patterning. 
For instance, they can be injected into channels, cavities and surfaces and the 
wetting performance and rheological can be affected by oxide skin of Ga-based 
liquid metals [64]. The technology of liquid metal patterning can be separated into 

Figure 15. (a) shows images for EGaIn spread dramatically in electrolyte to response low voltage. 
(a i) Because of large surface tension for EGaIn droplet, it is in spherical shape. (a ii) When oxidative 
potential is applied, the droplet reaches a new equilibrium shape. (a iii) When the potential above 
critical voltage, droplet spreads and flattens and finally forms to fingering shape. (b) The areal 
footprint of EGaIn marble as a function of time and potential. (c) EGaIn electrocapillary curve 
analysed by marble shape in 1 M NaOH. (d) The cyclic voltammogram of EGaIn marble. (e) The 
measured capacitance and calculated capacitive energy in this range [62].



ADVANCES IN PHYSICS: X﻿    429

Figure 16. (a–c) shows electric potential causes deformation. (a) A liquid metal marble far from 
two electrodes without electric potential. (b) When the marble contact one of the electrodes and 
electric potential is applied. (c) Deformation of this marble as 2D process. (d–h) Basic electrode 
array control algorithm to make alphabet letter ‘S’ [63].
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several categories, such as imprinting, direct patterning and addictive, the related 
progresses on this topic has been already reviewed [64,65]. For patterning liquid 
metal, imprinting metal in PDMS is an easy approach. Gozen et al. introduced the 
procedure for patterning liquid metal by imprinting (Figure 17(a)) [66]. Firstly, 
EGaIn is placed on a flat surface, then an elastomeric mould presses EGaIn and 
liquid metal is forced into recesses of mould. As the oxide skin forms at the surface 
of EGaIn, the liquid metal is wetting on PDMS, and it adhere to the cavity walls 
even after removing the mould from the flat surface. This method can generate 
two microns line width and submicron depth liquid metal traces [66]. Lu et al. 
reported a novel method which is utilising laser cutters for direct patterning liquid 
metal [67]. Figure 17(b)–(e) shows the way for direct patterning of laser, CO2 
laser cutter was utilised to remove liquid metal. The liquid metal is sandwiched 
by two PDMS layers, the top PDMS layer can absorb the initial highly laser light 
and protect EGaIn to avoid excessive oxidation during laser cutting. The CO2 
laser trance is applied to location, then the selected local area is removed, the 
liquid metal is patterned [67]. Addictive methods, especially 3D printing, can use 
computer-aided-design (CAD) to pattern complex and out-of-plane geometries to 
realise user customisation. Figure 18 shows liquid metal wires and a liquid metal 
droplet tower. It demonstrates this method can print 2D and three-dimensional 
(3D) structures [68].

High chemical reactivity and its applications

Like many post-transition metals, Ga and its alloys rapidly form an oxide skin on 
the surface of the metal when exposed to oxygen. The density and melting point 

Figure 17. (a) Patterning liquid metals by imprinting [66]. (b–e) Direct patterning liquid metal by 
laser. (b) liquid metal is sandwiched by two PDMS layer. (c) CO2 laser traces are applied. (d) PDMS 
vapourised on local area. (e) vapour escaping result in liquid metal is patterned [67].
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of a metal, taken together, can give a useful qualitative guide to the chemical 
reactivity of the metal, which means low density and low melting point indicate 
high reactivity [69]. For Ga-based liquid metal alloys which melting point less 
than room temperature, their surface show higher chemical activities owning to 
the diffusing metal atoms without lattice binding. Due to these specific features, 
Ga and its alloys provide an ideal reaction environment for the fabrication of 
nanomaterials [70].

Template for the growth of 2D materials
Two-dimensional (2D) materials display many outstanding features [71–74]. There 
are many methods to fabricate 2D materials, such as the exfoliation technique, 
atomic layer deposition [75] and chemical vapour deposition [76,77], but finding a 
method to make high-quality, large-area and large-scale 2D sheets remains a great 
challenge. Carey et al. introduced an approach to transform the native surface 
metal oxide layer of low melting point metal precursors to fabricate 2D metal 
chalcogenide compounds [70]. This novel method can synthesise large-area 2D 
semiconducting GaS through changing the oxide skin of the interfacial metal, 
and the metal is in the liquid state at room temperature. They selected a substrate 
to make the negative pattern for a photoresist (Figure 19(a)), choosing area to 
expose to cover vapour perflourodecyltriethoxysilane (FDTES) (Figure 19(b)). 
Figure 19(c) shows that liquid Ga is placed on substrate, then removed by PDMS, 
leaving a cracked layer of Ga oxide skin. After this process, only the Ga oxide 
layer is left, and the corresponding patterns are still visible. Figure 18(d) dis-
plays how hydrochloric acid (HCl) vapour treatment is utilised in intermediary 
processing before sulphurisation of the oxide. This is done because Ga oxide is 
chemically inert, and requires high temperature and toxic H2S. The gallium oxide 
is transformed into GaCl3, and then S vapour is used to sulphurise the GaCl3 at 
low temperature to form GaS (Figure 19(d)). This technique can be extended to 
make other 2D metal materials. Because many metallic elements can be alloyed 

Figure 18. (a) Liquid metal wires are made by additive patterning. (b) Liquid metal wires suspend 
on a gap. (c) A tower of liquid metal droplets [68].
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with gallium, this means that gallium can provide a reaction environment to make 
2D metal compounds [70].

In addition to chalcogenide compounds, liquid metals can offer reaction 
environments to synthesis 2D oxide nanomaterials. Zavabeti et al. utilised Ga 

Figure 19.  Schematic illustration of the printing process for GaS 2D layers. (a) Fabricating the 
negative pattern of the photoresist. (b) Utilising vapourised FDTES to cover the exposed surface 
of the substrate. (c) Placing gallium on the substrate, then removing it and leaving gallium oxide 
layer. (d) Firstly, HCl vapour is used to form a GaCl3 layer. Then, this layer is exposed to S vapour 
to form GaS [70].
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alloys as reaction media to produce oxide nanomaterials, including HfO2, Al2O3 
and Gd2O3 [78]. As Ga and its alloys can form a self-limiting oxide skin in the 
metal–air interface [20,79,80], the oxide layer can be seen as a naturally formed 
2D material. Based on the thermodynamic considerations, the composition of 
the oxide layer depends on the Gibbs free energy of the reactive metal (Figure 
20(a)). The Gibbs free energy values of surface oxides are lower than that of Ga 
oxide. After the formation of oxide, they used the van der Waals exfoliation 
technique (Figure 20(b)) and the gas injection method (Figure 20(c)) to fabricate 
2D nanosheets. These two steps are scalable and do not need complex systems. 
In this approach, liquid metal offers an environment during the reaction. This 
method should be suitable to fabricate oxides of many metals, and some of the 
oxides are significant because they have electronic, catalytic and other perfor-
mance capabilities [78].

Biocompatibility and its applications

The toxicity of mercury limited its clinical application, however, unlike Hg, 
Ga and its alloys show a wide range of benefits, such as low toxicity and bio-
compatibility. Compared with conventional biomaterials, liquid metal can 
provide novel capabilities and solutions due to its high conductivity and liquid 
feature [81].

Figure 20.  Fundamentals of the synthesis technique. (a) The Gibbs free energy of reactive 
metal oxides. (b) Schematic illustration of the van der Waals exfoliation method. (c) Schematic 
illustration of the gas injection approach [78].
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Nerve connection
Movement disorders mainly caused by Peripheral nerve injury (PNI) are a serious 
problem worldwide [82–88]. Minev et al. fabricated soft neural implants with 
the elasticity and shape of dura mater that have displayed long-term function-
ality [89]. Although there are many studies on nerve function with respect to 
anatomy and microsurgical techniques [90], the reasons for partial or complete 
loss of function represent a big challenge for basic research and clinical practice 
[91,92]. Traditionally, nerve auto-grafting has been a common approach to repair 
nerves [93], but it is limited by the problems of donor grafts and matching dimen-
sions [94]. Recently, Ga-based liquid metal has been found to provide an effective 
method for regeneration of peripheral nerve functional channels [95]. It is simple 
to fabricate, and convenient in surgical operation [96], and can be deformed in 
vivo. In addition, the electrical conductivity is much higher than in non-metallic 
materials. Therefore, it is a relative ideally biomaterial for PNI treatment [95]. 
Liu et al. proposed an approach that utilises EGaInSn for peripheral neurotmesis 
treatment [95]. The experiment was on bullfrogs’ sciatic nerves (Figure 21(a)). 
An electric stimulus is applied to stimulate the nerve. After the nerve is recon-
nected by the liquid metal or Ringer’s solution, the signal from the distal nerve 
was similar to that of an intact sciatic nerve (Figure 21(b) left). The difference was 
obvious, however, especially at the troughs and the peaks (Figure 21(b) right). 
EGaInSn can be combined with nerve conduits to achieve recovery of function in 
the period of regeneration (Figure 21(c)). EGaInSn displays many properties that 

Figure 21.  Schematic illustration of nerve connection by liquid metal. Images of nerve 
reconnected by liquid metal. (a) Schematic image of transected sciatic nerve reconnected by 
liquid metal and Ringer’s solution, respectively. A little red ink was added into the Ringer’s solution 
to separate it from the liquid metal. (b) The electroneurographic signal: on the left, it shows the 
electric-stimulus signal and the excitement signal from the intact nerve, which is connected by 
EGaIn or Ringer’s solution. On the right, amplified details are shown of a partial view. (c) Three 
kinds of nerve conduits to repair the injured peripheral nerve, including a nerve conduit with 
microchannels and a nerve conduit with concentric tubes [95].
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most conventional materials don’t possesses, it is significant for future research 
and clinical practice, and it provides opportunities for deep research on many 
scientific issues [81,95].

Therapeutic use for tumours
The growth of tumour relies on the supply of blood, oxygen and nutrients [97,98]. 
The techniques of radiotherapy and chemotherapy are generously used in clin-
ics along with surgical resection [81]. Nevertheless, there are many serious side 
effects. For instance, the tumours might be destroyed by chemotherapy and radio-
therapy, but normal tissues might be damaged simultaneously, while the immune 
system could be destroyed. Compared with ablation, liquid metals have a huge 
potential to offer a gentle approach to tumour therapy [81,97]. Wang et al. pro-
posed a method for vascular embolisation treatment. Liquid metal (EGaIn alloy) 
is utilised as an embolic agent to starve the target tumours to death [97]. EGaIn 
could be injected into vascular vessels to fill them continuously and directly. 
Normally, tissues are supplied with continuous nutrition and oxygen from the 
blood (Figure 22(a)). Although the vessel embolism could block the blood sup-
ply, the stream can be transmitted when the blockage does not occlude the blood 

Figure 22.  Schematic illustration of tumour vascular embolization therapy by liquid metal. 
(a) Oxygen and nutrition are supplied from vessels and tissues without embolic agents. (b) 
Incomplete occlusion. (c) Complete occlusion by the liquid metal. (d) The physical occlusion of 
the blood supply to the tumour. (e) The liquid metal could be injected into or removed from the 
vessel in case of need [97].
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supply completely (Figure 22(b)). The EGaIn embolic agent could be shaped easily 
in vessels and fully occlude the micro-channels (Figure 22(c)). As the tumour relies 
on the oxygen and nutrients that are supplied from the blood vessels, EGaIn could 
causes occlusion and tumour regression (Figure 22(d)). Moreover, EGaIn can be 
removed after completing the therapy (Figure 22(e)). Wang et al. demonstrated 
that EGaIn shows low toxicity and is acceptable for clinical practice based on the 
evaluation of Cell Counting Kit-8 (CCK-8) and flow cytometry experiments in 
vitro In this approach, EGaIn displays flexibility and it could match the vessels 
perfectly [81,97]. Therefore, liquid metal is an excellent agent for tumour treat-
ment in the future.

Figure 23. Schematic illiustration of liquid metal drug delivery system. (a) The route for LM-NP/
Dox-L. (b) The thiolated CD with Dox, HA-based targeting motif, and an EGaIn core are main 
components for LM-NP/Dox-L. (c) LM-NP/Dox for the targeted tumour treatment. (I) Accumulation 
of LM-NP/Dox-L on the tumour sites. (II) The receptors are overexpressed by binding. (III) Receptor-
mediated endocytosis; (IV) Acid-triggered fusion of LM-NP/Dox-L and endosomal/lysosomal 
escape of Dox-containing ligands; (V) Accumulation of Dox in the nucleus. (d) The process for 
fusion and degradation of LM-NP/Dox-L. (e) Chemical structures of MUA-CD and m-HA [12].
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Drug delivery
As inorganic nanoparticles display numerous advantages in drug delivery for 
the treatment of diseases, several inorganic nanocarriers have been created for 
targeted treatment [99–103]. These approaches are limited by certain factors, 
however, such as toxicity and lack of biodegradability [12]. Lu et al. reported a 
method to use Ga-based liquid metal nanoparticles for drug delivery, owing to the 
low toxicity of Ga and its alloys [12,104]. They use EGaIn-based drug nanocarriers 
that are assembled with thiolated ligands on the surfaces of these nanoparticles 
through ultrasonication around room temperature. The two ligands are thiolated 
(2-hydroxypropyl)-b-cyclodextrin (designated as MUA-CD) and thiolated hya-
luronic acid (designated as m-HA), which are not only agents protecting EGaIn 
nanoparticles, but also have an important part in drug loading. The final particle 
(designated as LM-NP/L) comprises three parts: a liquid metal (EGaIn) core, a 
CD-based drug-loading motif and a targeting HA ligand. The loading sites for 
doxorubicin (Dox, a chemotherapeutic drug) are offered by the seven-membered 
sugar ring of the CD [100]. Figure 23 shows the delivery system for liquid metal. 
Figure 23(a) and (b) show the preparation processes and components of LM-NP/
Dox-L. Figure 23(c) and (d) introduces LM-NP/Dox-L for cancer therapy, and 
then explains the procedure of fusion and degradation. The chemical structures 
of MUA-CD and m-HA are shown in Figure 23(e). This novel drug delivery plat-
form can be easily formed and assembled by ultrasonication. As a result, these 
nanoparticles can be fused for promoting drug release, and finally be degraded 
under mild acidic conditions. Furthermore, LM-NP/L has been investigated, and it 
shows no obvious toxicity. This system demonstrates that the liquid metal system 
is a good and novel platform for drug delivery [12].

Conclusion and outlook

Although liquid metal has been achieved great attention for a long time, Ga-based 
liquid metals are novel and significant materials that can be used for various 
applications in many industries due to their specific performance. In this review, 
we have focused on two major aspects: their physical, chemical and biological 
properties; then we classify these applications based on the related properties. 
With recent recognition of these properties, the potential to fabricate electronic 
components, superconductors and biomaterials has appeared. It is regarded that 
the Ga-based liquid metals still have much more potential to be utilised in the 
field of electronic fabrication, superconducting and energy biocompatibility. Many 
new materials integrated with liquid metal can also be envisioned and extended 
in different filed.
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