

A. N. Nesmeyanov, T. P. Tolstaya, Triphenyloxonium salts, *Dokl. Akad. Nauk SSSR*, 1957, Volume 117, Number 4, 626–628

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:

IP: 191.254.132.71

August 3, 2024, 11:57:04

ХИМИЯ

Академик А. Н. НЕСМЕЯНОВ и Т. П. ТОЛСТАЯ

соли трифенилоксония

Диазораспадом борофторидов арилдиазониев в среде бромбензола или хлорбензола нам удалось недавно впервые получить ряд диарилбромониевых и диарилхлорониевых солей (1). В настоящей работе мы описываем приложение этого же метода для получения ранее неизвестных третичных ароматических оксониевых солей.

В противоположность триалкилоксониевым солям Меервейна (²) соли трифенилоксония представляют собой чрезвычайно прочные соединения с температурами разложения выше 150° . Все описанные в данной работе соли, кроме хлорида и бромида, плохо растворимы в воде. В отличие от солей Меервейна, а также от хлорониевых и бромониевых солей соли трифенилоксония очень вяло вступают в реакцию фенилирования. Так, хлорид, бромид, йодид и борофторид трифенилоксония ни в каких испытанных условиях не фенилируют металлическую ртуть, борофторид не реагирует с медью и таллием. Фенилирование таких анионов, как NO_2' и N_3' , требует многочасового кипячения водных растворов. Его удается осуществить всего на 25-27%. Легче фенилируются соединения, содержащие атомы со свободными парами электронов. Пиридин, например, фенилируется по азоту с 90%-м выходом. Фенилирование диэтиламина происходит только в присутствии воды и проходит с выходом 60%.

Экспериментальная часть

1. Получение борофторида трифенилоксония. К 150 г дифенилоксида при 80—90° (температура бани) при энергичном перемешивании прибавлен в течение часа раствор 10,5 г борофторида фенилдиазония в 300 мл ацетона (который во время реакции непрерывно отгоняется). Для завершения реакции смесь нагревалась еще 30 мин., а по охлаждении обрабатывалась 4 раза 50%-м водным ацетоном (по 10 мл). Водно-ацетоновые вытяжки извлечены эфиром, и по отгонке последнего (и ацетона) в вакууме из раствора выделяется нерастворимый в воде борофторид трифенилоксония в количестве 0,38 г (2% от теоретического, считая на борофторид фенилдиазония) Соль очищена переосаждением из ацетона эфиром. Это бесцветные кристаллы с т. разл. 226°, хорошо растворимые в ацетоне, хуже в спиртах, нерастворимые в холодной воде и эфире.

Найдено %: С 64,61; 64,46; Н 4,56; 4,65 $C_{18}H_{15}BF_4O$. Вычислено %: С 64,73; Н 4,52

2. Другие соли трифенилоксония— см. табл. 1). Реакции фенилирования борофторидом трифенилоксония.

Реакция с нитритом натрия в водной среде. Раствор 1 г борофторида трифенилоксония и $2.5\,\mathrm{r}$ NaNO₂ в $30\,\mathrm{m}$ л воды кипятился в течение $25\,\mathrm{vac.}$, после чего из реакции выделено $0.51\,\mathrm{r}$ непрореагировав-

Анион соли	Получена из:	Выход %	Т. разл., °С	Анализ				
				C, %	Н, %	галоид, %	N, %	металл, %
C1'*	[(C ₆ H ₅) ₃ O].Сl ₄ и аце- тона	63	193—194	67,68;** 67,75 67,60	5,90	11.60 11.66 11.09		
Br'***	[(C ₆ H ₅) ₃ O]BF ₄ и NaBr	72	182— 182,5	65,86; 65.88 66,09	4,78; 4,68	$ \begin{array}{r} 24,55; \\ 24,20 \\ 24,42 \end{array} $		
J′	[(C ₆ H ₅) ₃ O]ВF ₄ и NаЈ	93	177-178	1 '	4,03; 4,03	$34,31; \\ 34,07 \\ \hline 33,92$		
HgI ₃	[(C ₆ H ₅) ₃ O]BF ₄ и NaHgJ ₃	92	156 – 157		$\frac{1,97}{2,01}$ $\frac{1,82}{1,82}$			
$(C_6H_5)_4B'$	[(C ₆ H ₅) ₃ O]BF ₄ и (C ₆ H ₅) ₄ BNa	100	~165	89,33	$\frac{6.17}{6.36}$ $\frac{6.23}{6.23}$			
PtCl ₆	[(С ₆ H ₅) ₃ O]BF ₄ и H ₂ PtCl ₆	44	184—185	47,83	$ 3,17; \\ 3,35 \\ 3,35 $			$21,75; \\ 21,64 \\ 21,63$
$\operatorname{Cr}_2\operatorname{O}^{''}$	[(C ₆ H ₅) ₃ O]J и K ₂ Cr ₂ O ₇	42	~180 (темнеет)	61,56	4,40; 4,44 4,25			$14,78; \\ 14,62 \\ \hline 14,63$
$C_6H_2(NO_2)_3O'$	[(C ₆ H ₅) ₃ O]BF ₄ и C ₆ H ₂ (NO ₂) ₃ OH	93		60,36	$ \begin{array}{c} 3,63; \\ 3.65 \\ \hline 3,60 \end{array} $		9,47; 9,19 8,84	
JCl′4	[(C ₆ H ₅) ₃ O]J и Cl ₂	94	167—171	41,95 41,99	$\begin{bmatrix} 2,90 \\ 2,91 \end{bmatrix}$	$\begin{bmatrix} 51,32 \\ 51,64 \\ \hline 55,06 \end{bmatrix}$	0,04	

^{*} Кристаллизуется с 2 молекулами воды.

шего борофторида трифенилоксония. Образовавшийся в результате реакции нитробензол не выделялся, а восстанавливался обычным образом (действием 1 г металлического олова в 3 мл конц. соляной кислоты) до анилина. Последний идентифицирован в виде бензолазо- β -нафтола, выход которого составляет 0.09 г (25% от теоретического, считая на вошедший в реакцию борофторид трифенилоксония), т. пл. $128-129^\circ$ $(128,5-129,5^\circ)$ (3)).

Реакция с абидом натрия в водной среде. Раствор 0,5 г борофторида трифенилоксония и 2 г NaN_3 в 30 мл воды кипятился в течение 14,5 час. Образовавшийся при этом фенилазид восстановлен натрием (0,5 г) в спирте (8 мл) до анилина. Последний диазотировался и сочетался с β -нафтолом. Выход бензолазо- β -нафтола 0,1 г (27% от теоретического, считая на борофторид трифенилоксония), т. пл. 128,5—129,5°.

Реакция с диэтиламином в водной среде. Смесь 0,25 г борофторида трифенилоксония, 15 мл диэтиламина и 6 мл воды кипятилась в течение 8,5 час. Образовавшийся диэтиланилин сочетался с n-нитрофенилдиазонием. Выход 4-нитро-4'-диэтиламиноазобензола 0,13 г (59% от теоретического, считая на борофторид трифенилоксония), т. пл. $149-150^\circ$. (151°)

Реакция с пиридином. Раствор 0,2 г борофторида трифенилоксония в 2 мл пиридина кипятился в течение 4 час. По охлаждении он раз-

^{**} Над чертой — найдено, под чертой — вычислено. *** Кристаллизуется с 1,5 молекулами воды. Приведен анализ безводной соли.

бавлен абс. эфиром. Выход выделившегося при этом борофторида N-фенилпиридиния составляет 0,13 г (89% от теоретического). Т. пл. 177,5—178,5°

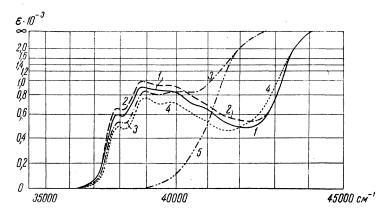


Рис. 1. Спектры поглощения солей трифенилоксония *. 1-4 — соли трифенилоксония: 1 — хлорид, 2 — бромид, 3 — йодид, 4 — борофторид, 5 — йодистый натрий; $c_{\rm M}\!=\!1\cdot10^{-3};\;d=0,5$ см; растворитель — этанол

после перекристаллизации из спирта) (178—179° (5)). Фильтрат от [$C_5H_5N^+C_6H_5$] B^-F_4 промыт несколько раз 5%-й соляной кислотой и высушен над CaCl₂. По испарении эфира осталось 0,05 г дифенилового эфира.

Московский государственный университет им. М. В. Ломоносова

Поступило 16 VII 1957

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Н. Несмеянов, Т. П. Толстая, Л. С. Исаева, ДАН, 104, 872 (1955). А. Н. Несмеянов, Т. П. Толстая, ДАН, 105, 95 (1955); А. Н. Несмеянов, Н. В. Круглова, Р. Б. Материкова, Т. П. Толстая, Журнош, хим., 26, 2211 (1956). ² Н. Меегwein, G. Hinzetal., J. Prakt. Chem., 147, 257 (1937); Н. Меегwein, Е. Ваttenbergetal., J. Prakt. Chem., 154, 83 (1939). ³ R. Мöhlau, E. Strohbach, Ber., 33, 805, 806 (1900). ⁴ E. Ватьегдег, Ber., 28, 843 (1895). ⁵ А. Н. Несмеянов, Л. Г. Макарова, Изв. АН СССР, ОХН, 1945, 617.

^{*} Спектры сняты в оптической лаборатории Института элементоорганических соединений на спектрофотометре ФП-1 конструкции В. И. Дианова-Клокова.