PrimeConstants -maxPrime 100 -chunkSize 10 -debug Generating primes up to 11 prime[4] = 11 term = 1/p^3 Enumerating primes in range [1..10] Computing partial sum... term(4,7) = t.lo = 0.002915451895043731300000000000 t.hi = 0.002915451895043732600000000000 term(3,5) = t.lo = 0.007999999999999998000000000000 t.hi = 0.008000000000000002000000000000 term(2,3) = t.lo = 0.037037037037037035000000000000 t.hi = 0.037037037037037050000000000000 term(1,2) = t.lo = 0.125000000000000000000000000000 t.hi = 0.125000000000000000000000000000 4 primes added so far c.lo = 0.172952488932080760000000000000 c.hi = 0.172952488932080800000000000000 maple= 0.17295248893208076881546269301371342187 Enumerating primes in range [11..20] Computing partial sum... term(8,19) = t.lo = 0.000145793847499635480000000000 t.hi = 0.000145793847499635540000000000 term(7,17) = t.lo = 0.000203541624262161580000000000 t.hi = 0.000203541624262161670000000000 term(6,13) = t.lo = 0.000455166135639508300000000000 t.hi = 0.000455166135639508500000000000 term(5,11) = t.lo = 0.000751314800901577600000000000 t.hi = 0.000751314800901577800000000000 8 primes added so far c.lo = 0.001555816408302882800000000000 c.hi = 0.001555816408302883500000000000 maple= 0.0015558164083028833090863177117355668919 Enumerating primes in range [21..30] Computing partial sum... term(10,29) = t.lo = 0.000041002091106646430000000000 t.hi = 0.000041002091106646456000000000 term(9,23) = t.lo = 0.000082189529053998510000000000 t.hi = 0.000082189529053998540000000000 10 primes added so far c.lo = 0.000123191620160644930000000000 c.hi = 0.000123191620160645000000000000 maple= 0.00012319162016064495955686441578340500296 Enumerating primes in range [31..40] Computing partial sum... term(12,37) = t.lo = 0.000019742167295125654000000000 t.hi = 0.000019742167295125664000000000 term(11,31) = t.lo = 0.000033567184720217510000000000 t.hi = 0.000033567184720217530000000000 12 primes added so far c.lo = 0.000053309352015343160000000000 c.hi = 0.000053309352015343190000000000 maple= 0.0000533093520153431742518204843183788908887 Enumerating primes in range [41..50] Computing partial sum... term(15,47) = t.lo = 0.000009631777159203642000000000 t.hi = 0.000009631777159203648000000000 term(14,43) = t.lo = 0.000012577508898587543000000000 t.hi = 0.000012577508898587550000000000 term(13,41) = t.lo = 0.000014509365795621071000000000 t.hi = 0.000014509365795621074000000000 15 primes added so far c.lo = 0.000036718651853412255000000000 c.hi = 0.000036718651853412275000000000 maple= 0.0000367186518534122638180472213183490514206 Enumerating primes in range [51..60] Computing partial sum... term(17,59) = t.lo = 0.000004869046981434322400000000 t.hi = 0.000004869046981434326000000000 term(16,53) = t.lo = 0.000006716954264258414000000000 t.hi = 0.000006716954264258416500000000 17 primes added so far c.lo = 0.000011586001245692736000000000 c.hi = 0.000011586001245692743000000000 maple= 0.0000115860012456927385242454728515881055706 Enumerating primes in range [61..70] Computing partial sum... term(19,67) = t.lo = 0.000003324877062670607000000000 t.hi = 0.000003324877062670608400000000 term(18,61) = t.lo = 0.000004405655098884927000000000 t.hi = 0.000004405655098884930000000000 19 primes added so far c.lo = 0.000007730532161555533000000000 c.hi = 0.000007730532161555538000000000 maple= 0.00000773053216155553644875051010782048449486 Enumerating primes in range [71..80] Computing partial sum... term(22,79) = t.lo = 0.000002028237117144891000000000 t.hi = 0.000002028237117144891500000000 term(21,73) = t.lo = 0.000002570581748355470000000000 t.hi = 0.000002570581748355471200000000 term(20,71) = t.lo = 0.000002793990684835056300000000 t.hi = 0.000002793990684835057500000000 22 primes added so far c.lo = 0.000007392809550335417000000000 c.hi = 0.000007392809550335421000000000 maple= 0.00000739280955033541826134782987367037268726 Enumerating primes in range [81..90] Computing partial sum... term(24,89) = t.lo = 0.000001418502090162829600000000 t.hi = 0.000001418502090162830200000000 term(23,83) = t.lo = 0.000001748903000592877500000000 t.hi = 0.000001748903000592878400000000 24 primes added so far c.lo = 0.000003167405090755707000000000 c.hi = 0.000003167405090755709000000000 maple= 0.000003167405090755707972130776920778524882 Enumerating primes in range [91..100] Computing partial sum... term(25,97) = t.lo = 0.000001095682681529967200000000 t.hi = 0.000001095682681529967900000000 25 primes added so far c.lo = 0.000001095682681529967200000000 c.hi = 0.000001095682681529967900000000 maple= 0.000001095682681529967469181185375265840010606 Estimating tail... tail term(27,103,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000008856768342367240000000000 tail term(26,101,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000009233610341643585000000000 t.lo = 0.000000000000000000000000000000 t.hi = 0.000018090378684010827000000000 s.lo = 0.174752497395142900000000000000 s.hi = 0.174770587773826980000000000000 maple= 0.1747524973951429218908513986219982450415538764 term = 1/2^(-p) Enumerating primes in range [1..10] Computing partial sum... term(4,7) = t.lo = 0.007812500000000000000000000000 t.hi = 0.007812500000000000000000000000 term(3,5) = t.lo = 0.031250000000000000000000000000 t.hi = 0.031250000000000000000000000000 term(2,3) = t.lo = 0.125000000000000000000000000000 t.hi = 0.125000000000000000000000000000 term(1,2) = t.lo = 0.250000000000000000000000000000 t.hi = 0.250000000000000000000000000000 4 primes added so far c.lo = 0.414062500000000000000000000000 c.hi = 0.414062500000000000000000000000 Enumerating primes in range [11..20] Computing partial sum... term(8,19) = t.lo = 0.000001907348632812500000000000 t.hi = 0.000001907348632812500000000000 term(7,17) = t.lo = 0.000007629394531250000000000000 t.hi = 0.000007629394531250000000000000 term(6,13) = t.lo = 0.000122070312500000000000000000 t.hi = 0.000122070312500000000000000000 term(5,11) = t.lo = 0.000488281250000000000000000000 t.hi = 0.000488281250000000000000000000 8 primes added so far c.lo = 0.000619888305664062500000000000 c.hi = 0.000619888305664062500000000000 Enumerating primes in range [21..30] Computing partial sum... term(10,29) = t.lo = 0.000000001862645149230957000000 t.hi = 0.000000001862645149230957000000 term(9,23) = t.lo = 0.000000119209289550781250000000 t.hi = 0.000000119209289550781250000000 10 primes added so far c.lo = 0.000000121071934700012200000000 c.hi = 0.000000121071934700012200000000 Enumerating primes in range [31..40] Computing partial sum... term(12,37) = t.lo = 0.000000000007275957614183426000 t.hi = 0.000000000007275957614183426000 term(11,31) = t.lo = 0.000000000465661287307739300000 t.hi = 0.000000000465661287307739300000 12 primes added so far c.lo = 0.000000000472937244921922700000 c.hi = 0.000000000472937244921922700000 Enumerating primes in range [41..50] Computing partial sum... term(15,47) = t.lo = 0.000000000000007105427357601002 t.hi = 0.000000000000007105427357601002 term(14,43) = t.lo = 0.000000000000113686837721616030 t.hi = 0.000000000000113686837721616030 term(13,41) = t.lo = 0.000000000000454747350886464100 t.hi = 0.000000000000454747350886464100 15 primes added so far c.lo = 0.000000000000575539615965681200 c.hi = 0.000000000000575539615965681200 Enumerating primes in range [51..60] Computing partial sum... term(17,59) = t.lo = 0.000000000000000001734723475977 t.hi = 0.000000000000000001734723475977 term(16,53) = t.lo = 0.000000000000000111022302462516 t.hi = 0.000000000000000111022302462516 17 primes added so far c.lo = 0.000000000000000112757025938493 c.hi = 0.000000000000000112757025938493 Enumerating primes in range [61..70] Computing partial sum... term(19,67) = t.lo = 0.000000000000000000006776263579 t.hi = 0.000000000000000000006776263579 term(18,61) = t.lo = 0.000000000000000000433680868995 t.hi = 0.000000000000000000433680868995 19 primes added so far c.lo = 0.000000000000000000440457132573 c.hi = 0.000000000000000000440457132573 Enumerating primes in range [71..80] Computing partial sum... term(22,79) = t.lo = 0.000000000000000000000001654362 t.hi = 0.000000000000000000000001654362 term(21,73) = t.lo = 0.000000000000000000000105879119 t.hi = 0.000000000000000000000105879119 term(20,71) = t.lo = 0.000000000000000000000423516474 t.hi = 0.000000000000000000000423516474 22 primes added so far c.lo = 0.000000000000000000000531049954 c.hi = 0.000000000000000000000531049954 Enumerating primes in range [81..90] Computing partial sum... term(24,89) = t.lo = 0.000000000000000000000000001616 t.hi = 0.000000000000000000000000001616 term(23,83) = t.lo = 0.000000000000000000000000103398 t.hi = 0.000000000000000000000000103398 24 primes added so far c.lo = 0.000000000000000000000000105014 c.hi = 0.000000000000000000000000105014 Enumerating primes in range [91..100] Computing partial sum... term(25,97) = t.lo = 0.000000000000000000000000000007 t.hi = 0.000000000000000000000000000007 25 primes added so far c.lo = 0.000000000000000000000000000007 c.hi = 0.000000000000000000000000000007 Estimating tail... tail term(27,103,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000001 tail term(26,101,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000001 t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000001 s.lo = 0.414682509851111660000000000000 s.hi = 0.414682509851111770000000000000 term = 1/3 if p = 3 else 0 Enumerating primes in range [1..10] Computing partial sum... term(4,7) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(3,5) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(2,3) = t.lo = 0.333333333333333300000000000000 t.hi = 0.333333333333333370000000000000 term(1,2) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 4 primes added so far c.lo = 0.333333333333333300000000000000 c.hi = 0.333333333333333370000000000000 Enumerating primes in range [11..20] Computing partial sum... term(8,19) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(7,17) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(6,13) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(5,11) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 8 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [21..30] Computing partial sum... term(10,29) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(9,23) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 10 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [31..40] Computing partial sum... term(12,37) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(11,31) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 12 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [41..50] Computing partial sum... term(15,47) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(14,43) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(13,41) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 15 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [51..60] Computing partial sum... term(17,59) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(16,53) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 17 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [61..70] Computing partial sum... term(19,67) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(18,61) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 19 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [71..80] Computing partial sum... term(22,79) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(21,73) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(20,71) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 22 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [81..90] Computing partial sum... term(24,89) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 term(23,83) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 24 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Enumerating primes in range [91..100] Computing partial sum... term(25,97) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 25 primes added so far c.lo = 0.000000000000000000000000000000 c.hi = 0.000000000000000000000000000000 Estimating tail... tail term(27,103,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 tail term(26,101,2,6) = t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 t.lo = 0.000000000000000000000000000000 t.hi = 0.000000000000000000000000000000 s.lo = 0.333333333333333300000000000000 s.hi = 0.333333333333333370000000000000