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Chapter 1

Introduction

Currently, all blockchain consensus protocols that are actively in use have
a critical limitation: every node in the network must process every transac-
tion. Although this requirement ensures a very strong guarantee of security,
making it all but impossible for an attacker even with control over every
node participating in the consensus process to convince the network of the
validity of an invalid transaction, it comes at a heavy cost: every blockchain
protocol that works in this way is forced to choose between limiting itself to a
low maximum transaction throughput, with a resulting high per-transaction
cost, and allowing a high degree of centralization.

What might perhaps seem like a natural solution, splitting the relevant
data over a thousand blockchains, has the two fundamental problems that
it (i) decreases security, to the point where the security of each individual
blockchain on average does not grow at all as total usage of the ecosystem
increases, and (ii) massively reduces the potential for interoperability. Other
approaches, like merge-mining, seem to have stronger security, though in
practice such approaches are either very weak in more subtle ways [1] -
and indeed, merged mined blockchains have successfully been attacked[2] -
or simply fail to solve scalability, requiring every consensus participant to
process every blockchain and thus every transaction anyway.

There are several reasons why scalable blockchain protocols have proven
to be such a difficult problem. First, because we lose the guarantee that a
node can personally validate every transaction in a block, nodes now nec-
essarily need to employ statistical and economic means in order to make
sure that other blocks are secure; in essence, every node can only fully keep
track of at most a few parts of the entire ”state”, and must therefore be
a ”light client”, downloading only a small amount of header data and not
performing full verification checks, everywhere else. Second, we need to be
concerned not only with validity but also with data availability; it is entirely
possible for a block to appear that looks valid, and is valid, but for which the
auxiliary data is unavailable, leading to a situation where no other validator
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can effectively validate transactions or produce new blocks since the neces-
sary data is unavailable to them. Finally, transactions must necessarily be
processed by different nodes in parallel, and given that it is not possible to
parallelize arbitrary computation [3], we must determine the set of restric-
tions to a state transition function that will best balance parallelizability
and utility.

This paper proposes another set of strategies for achieving scalability, as
well as some formalisms that can be used when discussing and comparing
scalable blockchain protocols. Generally, the strategies revolve around a
”sample-and-fallback” game: in order for any particular block to be valid,
require it to be approved by a randomly selected sample of validators, and
in case a bad block does come through employ a mechanism in which a
node can challenge invalid blocks, reverting the harmful transactions and
transferring the malfeasant validators’ security deposit to the challengers as
a reward unless the challenge is answered by a confirmation of validity from a
much greater number of validators. Theoretically, under a Byzantine-fault-
tolerant model of security, fallback is unnecessary; sampling only is sufficient.
However, if we are operating in an anonymous-validator environment, then
it is also considered desirable to have a hard economic guarantee of the
minimum quantity of funds that needs to be destroyed in order to cause a
certain level of damage to the network; in that case, in order to make the
economic argument work we use fallback as a sort of incentivizer-of-last-
resort, making cooperation the only subgame-perfect equilibrium.

The particular advantage that our designs provide is a very high degree of
generalization and abstraction; although other schemes using technologies
like auditable computation[5] and micropayment channels[6] exist for in-
creasing efficiency in specific use cases like processing complex verifications
and implementing currencies, our designs require no specific properties of
the underlying state transition function except for the demand that most
state changes are in some sense “localized”.

Our basic designs allow for a network consisting solely of nodes bounded
by O(N) computational power to process a transaction load of O(N2−ε)
(we generally use O(N ε) to denote polylogarithmic terms for simplicity),
under both Byzantine-fault-tolerant and economic security models; we then
also propose an experimental “stacking” strategy for achieving arbitrary
scalability guarantees up to a maximum of O(exp(N/k)) transactional load,
although we recommend that for simplicity implementers attempt to perfect
the O(N2−ε) designs first.
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Chapter 2

Definitions

Definition 2.1 (State). A state is a piece of data.

Definition 2.2 (Transaction). A transaction is a piece of data. A transac-
tion typically includes a cryptographic signature from which one can verify
its sender, though in this paper we use ”transaction” in some contexts more
generally.

Definition 2.3 (State Transition Function). A state transition function is
a function APPLY (σ, τ) → σ′ ∪ {∅}, where σ and σ′ are states and τ is a
transaction. If APPLY (σ, τ) = ∅, we consider τ invalid in the context of
σ. A safe state transition function SAFE(APPLY ) = APPLY ′ is defined
by APPLY ′(σ, τ) = {σ if APPLY (σ, τ) = ∅ else APPLY (σ, τ)}.

For simplicity, we use the following notation:

• APPLY (σ, τ)→ σ′ becomes σ + τ = σ′

• SAFE(APPLY )(σ, τ)→ σ′ becomes σ++τ = σ′

• Given an ordered list T = [τ1, τ2, τ3...] and a state σ, we define σ+T =
σ + τ1 + τ2 + ...

• Given an ordered list T = [τ1, τ2, τ3...] and a state σ, we define σ0 = σ
and σi+1 = σi + +τi+1. We denote with T \ σ the ordered list of all
τi ∈ T such that σi + τi 6= ∅.

• T is valid in the context of σ if T = T \ σ

• [n] is the set {1, 2, 3.....n}

Definition 2.4 (Replay-immunity). A state transition function is replay-
immune if, for any σ, τ and T , σ+τ+T+τ = ∅. Generally, we assume that
all state transition functions used in consensus protocols are replay-immune;
otherwise, the protocol is almost certainly vulnerable to either exploits or
denial of service attacks.
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Note. Replay-immunity is not a sufficient condition for being double-spend-
proof. Descriptions of blockchains as “anti-replay oracles” [4] emphasize the
functionality of preventing the successful application of more than one mem-
ber of a particular class of transactions, where the class is usually defined as
the transactions that spend a particular unspent balance, which is different
from the kind of replay-immunity that we describe here.

Definition 2.5 (Commutativity). Two transactions or lists of transactions
T1, T2 are commutative in the context of σ if σ + T1 + T2 = σ + T2 + T1.

Definition 2.6 (Partitioning scheme). A partitioning scheme is a bijective
function P which maps possible values of σ to a tuple (σ1, σ2...σn) for a
fixed n. For simplicity, we use σ[i] = P (σ)[i], and if S is a set, σ[S] = {i :
P (σ)[i] for i ∈ S}. An individual value σ[i] will be called a substate, and a
value i will be called a substate index.

Definition 2.7 (Affected area). The affected area of a transaction (or trans-
action list) τ in the context of σ (denoted AFFECTED(σ, τ)) is the set of
indices S such that (σ+ τ)[i] 6= σ[i] for i ∈ S and (σ+ τ)[i] = σ[i] for i /∈ S.

Definition 2.8 (Observed area). The observed area of a transaction (or
transaction list) τ in the context of σ (denoted OBSERV ED(σ, τ)) is de-
fined as the smallest set of indices S such that for any ψ where ψ[S] = σ[S]
and ψ′ = ψ + τ , we have ψ′[S] = σ′[S] and ψ′[i] = ψ[i] for i /∈ S.

Note. The observed area of a transaction, as defined above, is a superset of
the affected area of the transaction.

Theorem 2.0.1. If, in the context of σ, the observed area of T1 is disjoint
from the affected area of T2 and vice versa, then T1 and T2 are commutative.

Proof. Suppose a partition of [n] into the subsets a = AFFECTED(σ, T1),
b = AFFECTED(σ, T2) and c = [n] \ a \ b. Let us repartition σ as (α, β, γ)
for σ[a], σ[b] and σ[c] respectively. Suppose that σ + T1 = (α′, β, γ), and
σ + T2 = (α, β′, γ). Because a is outside the observed area of T2 (as it is
the affected area of T1), we can deduce from the previous statement that
(x, β, γ) + T2 = (x, β′, γ). Hence, σ + T1 + T2 = (α′, β, γ) + T2 = (α′, β′, γ).
Similarly, because b is outside the observed area of T1, σ + T2 + T1 =
(α, β′, γ) + T1 = (α′, β′, γ).

Definition 2.9 (Disjointness). Two transactions are disjoint if there exists
a partition such that the observed area of each transaction is disjoint from
the affected area of the other. If two transactions are disjoint then, as shown
above, they are commutative.

Note. Disjointness does not preclude the observed areas of T1 and T2 from
intersecting. However, in the rest of this paper, we will generally follow a
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stricter criterion where observed areas are not allowed to intersect; this does
somewhat reduce the effectiveness of our designs, but it carries the benefit
of allowing a substantially simplified analysis.

Definition 2.10 (Block). A block is a piece of data, encoding a collection of
transactions typically alongside verification data, a pointer to the previous
block, and other miscellaneous metadata. There typically exists a block-level
state transition function APPLY , where APPLY (σ, β) = σ + T , where T
is a list of transactions. We of course denote APPLY (σ, β) with σ + β. A
block is valid if T is valid in the context of σ, and if it satisfies other validity
criteria that may be specified by the protocol. In many protocols, there
exists a special “block finalization function”; we model this by stipulating
that every block may include a “virtual transaction” that effects the desired
state transition.

Definition 2.11 (Proposer). The proposer of a block is the user that pro-
duced the block.

Definition 2.12 (Blockchain). A blockchain is a tuple (G,B) where G is a
genesis state and B is an ordered list of blocks. Cryptographic references
(ie. hashes) are typically used to maintain the integrity of a blockchain and
allow it to be securely represented only by its final block. A blockchain is
valid if B \ G = B (ie. all blocks are valid in their respective contexts if
applied to G sequentially).

Definition 2.13 (Parent). The parent of a state σ is defined as the state
σ−1 such that σ−1 + β = σ for some β that has actually been produced by
some user in the network. For genesis states, we define PARENT (σ) = ∅.

Definition 2.14 (Ancestor). The set of ancestors of a state σ is recursively
defined via ANC(σ) = ∅ if PARENT (σ) = ∅ else {PARENT (σ)} ∪
ANC(PARENT (σ)).

Definition 2.15 (Weight function). A weight function is a function W (u, σ)
on the set of users u1...un (each of which is assumed to have a private and
public key) in the context of a state σ, such that for all users in the network,∑n

i=0W (ui, σ) = 1. “k of all weight” will be used to denote the idea of a
subset of users such that the sum of their weights is k.

Note. A combination of a weighting function and a threshold 0.5 < t < 1
produces a quorum system.

Definition 2.16 (State root function). A state root function is a collision-
proof preimage-proof function R(σ) → x ∈ D for some compactly rep-
resentable domain D (usually D = {0, 1}256). R can also be applied to
substates.
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Definition 2.17 (Partition-friendliness). A state root function is partition-
friendly with respect to a particular partitioning scheme if one can compute
R(σ) by knowing only R(σ[0]), R(σ[1])...R(σ[n]).

Assumption 2.1. Any state root function that will be used by any of the
protocols described below will be partition-friendly with respect to any parti-
tioning scheme that will be used by the protocols.

Definition 2.18 (Availability). A state σ is available if, for every i ∈ [n],
σ[i] can be readily accessed from the network if needed.

Definition 2.19 (Altruist). An altruist is a user that is willing to faithfully
follow the protocol even if they have an opportunity to earn a profit or save
on computational expenses by violating it.

Assumption 2.2. There exists a constant 0 < wa <
1
3 such that at least

wa of weight is altruistic under all major weight functions that are used
in cryptoeconomic systems (eg. computational power, stake under deposit,
transaction fees paid, transaction coin age burned).

Assumption 2.3. A sufficient condition of availabilty is for every σ[i] to
be in the hands of at least one altruist.

Note. This follows from our assumption of a working distributed hash table,
elaborated on in the next section.

Definition 2.20 (Cryptoeconomic State Machine). A cryptoeconomic state
machine is a tuple (G,APPLY, P, F ) where G is a genesis state, APPLY
is a block-level state transition function and P is a process for determining
the next block. The cryptoeconomic state machine maintains a “current
state” σ, repeatedly employs P (by incentivizing validators to carry out
their individual roles in P) in order to determine a “next block” β, and then
sets σ ← σ + β. F is a process which can be used by a user to determine
a recent value of σ. Desired properties for a cryptoeconomic state machine
are:

• Consistency : everyone sees the same value of σ for maximally recent
iterations of P . If σ is too large for any user to download in its entirety,
we understand this to mean that everyone sees the same value of R(σ).

• Data availability : all of σ is available.

• Non-reversion: σ ideally only changes through the application of ad-
ditional blocks; it should not revert to previous values. If it does
sometimes revert to previous values, the total number and depth of
transactions “undone” during such a revert should be minimized.
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• Validity : σ only ever attains values that are the result of G + T for
some transaction list T , where T can be produced, using the set of all
data that has ever been produced by any user as input, in polynomial
time. That is, “illegal transitions” that cannot be explained by the
sequential application of a set of known transactions do not occur.

• Byzantine fault-tolerance: the above guarantees remain even if up to k
of all weight (eg. k = 1

3) fails to follow the protocol and/or misbehaves
arbitrarily (including irrationally).

• Economic security : the above guarantees survive even if all users ex-
cept altruists are rational, and are being bribed by an attacker with a
budget less than b ∗ L where b is a constant and L is some metric of
the value of economic activity in the system.

• Complete security : the guarantee of economic security survives even
if up to k of all weight misbehaves arbitrarily (including irrationally).

Note. The Byzantine-fault-tolerance requirement in place of a fixed quan-
tity of weight controlled by altruists can be viewed an application of the
Byzantine-Altruist-Rational model by Aiyer et al[9]; however, we depart
from Aiyer et al’s model in that in our case we allow rational nodes to be
bribed by attackers with the total bribe having a particular maximum size.

Note. A cryptoeconomic state machine requires either a Byzantine-fault-
tolerant consensus or, as in the case of proof of work[10], a reasonably close
approximation thereof. However, since our paper generally assumes the ex-
istence of non-scalable cryptoeconomic state machines as a given, we will not
spend too much time discussing Byzantine fault-tolerant consensus theory,
only seeking to show how the scalable consensus problem can be reduced to
the non-scalable case.

Note. The definition of economic security used above is taken from Vlad
Zamfir’s model of a “bribing attacker” [7]. Bribes do not need to represent
literal monetary or other bribes; they can represent blackmail, threats, gov-
ernmental influence, and even arbitrary personal tastes and prejudices; the
intent is to model incentives outside the system by making the assumption
that the size of these incentives is bounded by b ∗ L. Complete security (ie.
economic security under Byzantine faults), rather than simply economic se-
curity, is required because, in practice, there do also exist validators that
are so irrational that they would pass on even a trillion-dollar incentive in
order to stray from the protocol in some way, and it is sometimes possible to
inflict extremely high disincentives against specific agents at only medium
cost, eg. by means of violence.

Assumption 2.4. The “economic metric of activity” used to define eco-
nomic security, transaction load, and the number of users are all propor-
tional to each other.
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Definition 2.21 (Validators). The validators in a cryptoeconomic state
machine are either (i) the users that are involved in the consensus process of
agreeing on blocks, or (ii) the set of entities that must provide a signature
validating a specific object in order for that object to be accepted by the
protocol.

Assumption 2.5 (Wealth concentration). There exists some constant b
such that at least b∗L worth of economic power is concentrated in the hands
of either individuals or groups of individuals capable of coordination that
each have access to at least b∗L

N1−ε funds.[8]

Definition 2.22 (Scalability). A cryptoeconomic state machine is scal-
able if, assuming each individual user has computational power, storage
and bandwidth bounded above by N , the state machine can process ω(N)
(ie. strictly greater than O(N)) transactions (with combined Kolmogorov
complexity ω(N)) and operate on states of size and Kolmogorov complexity
ω(N).

Lemma 2.0.2. It is not possible to achieve scalability for arbitrary state
transition functions.

Proof. Suppose the state transition function σ + τ = H(σ + τ) for some
hash function. This is clearly unparallelizable. Hence, the transaction rate
is bounded above by the serial computational power of one node.

Note. Because of the previous lemma, we can see that the introduction of
scalability will necessarily involve some restrictions to the state transition
function - in fact, very similar restrictions to those that would come into play
when implementing a highly parallelizable computing platform. In general,
this involves most state transitions being “localized” and only having an ob-
served area making up a very small part of the state. Fortunately, given that
cryptoeconomic state machines in practice tend to be massively multi-user
environments, most on-chain activity already does satisfy that definition, al-
though some care is required in order to ensure the highest possible ability
to interact between arbitrary pairs of substates, as arbitrary A-to-B sends
are a very common use case.
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Chapter 3

Cryptographic and
Cryptoeconomic Primitives

Definition 3.1 (Sampling function). A sampling function is a function
SAMPLE(W,k,m) → u1...um that takes a weight function W , a salt k
and a number m and outputs a pseudorandomly selected (weighted by W )
sample of m users.

Example 3.0.1. Arrange all users u1...un in order of public key, and assign
the range [

∑j−1
i=1 W (ui)...

∑j
i=1W (ui)] to user uj for all 1 <= j <= n. For

all 1 ≤ h ≤ m, return the user whose range includes the value H(k+h)
2256

for
some hash function H.

Definition 3.2 (Merkle tree protocol). A Merkle tree protocol is a scheme
consisting of two functions:

• P (σ, i)→ π

• V (ρ, i, π, V )→ {0, 1}

V should only return 1 if π is a proof showing that V = σ[i] for some σ such
that R(σ) = ρ.

Note. There exist Merkle tree protocols for which P and V can be computed
in logarithmic time [11], and there exist state root functions which can
determine the new state root after a minor change to a value or even the
introduction or removal of a partition in logarithmic time.

Definition 3.3 (Merkle branch). A Merkle branch is the tuple (V, π).

Definition 3.4 (Cryptoeconomically secure entropy source). A cryptoeco-
nomically secure entropy source is a protocol inside of a state transition
function in a cryptoeconomic state machine that maintains an internal, reg-
ularly changing, value v ∈ D for some domain D (usually {0, 1}256) with
the following desired properties:
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• Unpredictablity : there exists a value M such that at time t0 +M the
probability distribution of v conditional only on information available
at time t0 is statistically indistinguishable from the random distribu-
tion. That is, an agent with only information available at time t0
cannot determine a value x such that v = x with probability that is
not in the range [1−ε|D| ,

1+ε
|D| ] for cryptographically negligible ε.

• Uninfluenceability (I): For any predicate P which the value v would
have at some given future time with probability p assuming everyone
correctly follows the specified protocol, the cost of making the value
have that predicate with probability p′ > p is bounded below by b∗L∗
(p′−p) where b is a constant independent of P and L is some economic
metric of activity in the state machine.

• Uninfluenceability (II): There exist constants k and b such that for any
predicate P which the value v would have at some given future time
with probability p assuming everyone honestly follows the protocol, an
actor controlling less than k of the weight can increase the probability
to at most p′ = p ∗ (1 + b).

Example 3.0.2. The cryptoeconomically secure entropy source used in
NXT[16] is defined recursively as follows:

• E(G) = 0

• E(σ+β) = sha256(E(σ) +V (β)) where V (β) is the block proposer of
β.

Assumption 3.1. For any time internal I, there exists some fixed probabil-
ity po(I) such that a node randomly selected according to the weight function
used to measure a cryptoeconomic state machine’s Byzantine fault tolerance
can be expected to be offline for at least the next I seconds starting from any
particular point in time with at least probability po.

Note. We can derive the above assumption from an altruism assumption by
simply stating in the protocol that nodes “should” randomly drop offline
with low probability; however, in practice it is simpler and cleaner to rely
only on natural faults.

Note. Combining the two uninfluenceability criteria into one (“it is impos-
sible to increase the probability of P from p to p∗ (1+k) without expending
at least b ∗L ∗ k resources”) is likely very difficult; it is hard to avoid having
ways to cheaply multiply the probability of low-probability predicates by
only acting when you are sure that your action will have an influence on the
result.

Note. In practice, the second criterion is important for security, whereas the
first criterion is important in order to avoid triggering superlinear returns
on capital in systems where randomly selected stakeholders are rewarded.
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Lemma 3.0.3. The NXT algorithm described above satisfies the conditions
for being a cryptoeconomically secure entropy source.

Proof. To prove unpredictability, we note that the NXT blockchain pro-
duces a block every minute, and so the update v ← sha256(v, V (β)) takes
place once a minute. During each round of updating, there is a probabil-
ity 1 − po(60) that the primary signer will be online, and po(60) that the
signer will be offline and thus a secondary signer will need to produce the
block. Hence, after 1

−log(po(60)) blocks, there is a probability p ≈ 1
2 that the

resulting value will be the “default value” obtained from updating v with
the primary signers’ public keys at each block, and a p ≈ 1

2 probability that
the resulting value will be different. We model 512 iterations of this pro-
cess as a tree, with all leaves being probability distributions over sequences
of 512 public keys of signers, where all probability distributions are dis-
joint (ie. no sequence appears with probability greater than zero in multiple
leaves). By random-oracle assumption of sha256, we thus know that we have
a set of 2512 independently randomly sampled probability distributions from
{0, 1}256, and so each value will be selected an expected {0, 1}256 times, with
standard deviation 2128. Hence, the probability distribution is statistically
indistinguishable from a random distribution.

To show that the first uninfluenceability criterion holds true, note that
the only way to manipulate the result is for the block proposer to disappear,
leading to another proposer taking over. However, this action is costly for
the proposer as the proposer loses a block reward. The optimal strategy
is to disappear with probability 0 < q <= 1 only when the predicate will
be unsatisfied with the proposer participating but will be satisfied with
the next proposer partipating; if a predicate has probability p this entails
disappearing p ∗ (1− p) ∗ q of the time, meaning that the predicate will be
satisfied p+ p ∗ (1− p) ∗ q of the time instead of p of the time, a probability
increment of p∗(1−p)∗q will have a cost of p∗(1−p)∗q∗R if R is the signing
reward (whose real value is proportional to the quantity of transaction fees, a
reasonable metric of economic activity). Hence, the desired condition holds
true with b = 1.

To show that the second uninfluenceability criterion holds true, note that
when one is not the signer, one has no influence on the entropy, and when
one is the signer one has the ability to not sign and instead defer to the
next signer. Hence, an attacker controlling 1

k of all signing slots will be able
to defer to the second signer 1

k of the time, to the third signer 1
k2

of the
time (by being in the first two slots simultaneously), etc, so in total such an
attacker will on average be able to choose between 1 + 1

k−1 values and thus

multiply the probability of a desired predicate by a factor of 1 + 1
k−1 . If the

attacker controls 1
3 of all signing slots, the result will thus be increasing the

probablity by a factor of 3
2 .
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Note. The above algorithm is only one of a class of algorithms that try to
derive entropy from individual faults. There are also other approaches for
deriving entropy, including N − of − N commit-reveal protocols, relying
on at least one of the participants to be altruistic and refuse to share their
entropy with the other participants. It is an open problem to determine if
one can come up with cryptoeconomically secure entropy sources cheaper
than proof-of-work that rely purely on a rationality assumption.

Note. The above algorithm is NOT downward-uninfluenceable. If there is
a predicate P with low probability, then one can influence its probability
down to P ∗ wa by simply bribing all validators who would have created a
block that changed the entropy value to something satisfying P to instead sit
their turn out and let the next validator make a block, almost certainly not
triggering P . The wa multiplier comes from the fact that we are assuming
a subset of validators that cannot be bribed. However, for predicates with
medium probability, one can derive a certain degree of resistance to down-
ward influence simply by applying the upward-uninfluenceability guarantees
to ¬P .

Definition 3.5 (zk-SNARK scheme). A zk-SNARK scheme is a tuple of
three functions G, P , V , where:

• G(prog)→ k generates a ”verification key” from a program.

• P (prog, Is, Ip)→ π generates a proof that prog(Is, Ip) for some secret
inputs Is and public inputs Ip is equal to its actual output, o.

• V (k, Ip, o, π)→ {0, 1} verifies a proof, accepting it only if π is actually
a proof that prog(Is, Ip) = o where G(prog) = k.

Additionally, π should reveal no information about the value of Is. Schemes
exist [17] to perform G and P in a time equal to O(N ∗ logk(N)) for a small
k where N is the number of execution steps, and V can be computed in
some cases in polylogarithmic time and in some cases in constant time.

Note. We provide algorithms which achieve scalability without zk-SNARKs,
however we will show how zk-SNARKs can also be used in scalable blockchain
protocols.

Definition 3.6 (Decentralized oracle scheme). A decentralized oracle scheme
is a mechanism which asks a set of participants to provide an answer to a
subjective question (eg. ”what was the temperature in San Francisco on 2015
Jan 9?”), and attempts to incentivize the participants to answer correctly.
The output of the mechanism is generally considered to be the majority
answer, and as input the scheme usually requires an economic subsidy.

Example 3.0.3. A simple decentralized oracle scheme, called “Schelling-
Coin”, has the following rules:
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• Each of N participants must vote either 1 or 0 on a question (a scalar-
valued or multi-valued question is modeled as a series of binary ques-
tions).

• A participant whose vote aligns with the majority vote receives a re-
ward of P .

• A participant whose vote does not align with the majority vote receives
a reward of 0.

SchellingCoin is vulnerable to zero-cost equilibrium flips, and so under a
formal definition of economic security it cannot be viewed as having any
security margin at all, though the difficulty of the inherent coordination
problem may still allow the scheme to function in practice. An attacker with
a budget greater than P and the ability to credibly commit to to providing
a bribe under certain conditions in the future can, assuming rationality of
the participants, effect an equilibrium flip toward a wrong answer at no cost
[19].

Note. There are two ways to make SchellingCoin-like protocols more power-
ful by increasing their security margin. The first involves a strategy of Sztor-
cian counter-coordination[20], which attempts to naturally set the quantity
of funds at stake in proportion to the level of controversy in the question; in
the limit, people who do not vote alongside the majority answer lose their
entire security deposit. The game-theoretic argument is that if a medium-
sized bribe to vote incorrectly is offered, then voters will vote for the correct
answer with some of their funds and for the incorrect answer with some
of their funds, leading to an equilibrium where the majority of the voting
power is still in favor of the correct answer but the users also manage to
“steal” some of the bribe:

This approach accepts that attackers with a budget even larger than
the size of everyone’s security deposits will be able to cause everyone to flip
to voting incorrectly as an equilibrium, but advocates note that attackers
that large will also be able to arbitrarily disrupt the underlying blockchain
consensus anyway.

The second is to fall back to “subjective resolution”: if the majority
of voters vote incorrectly, then it is up to the users to simply reject that
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block as invalid and go along with the block that they see as correct. This
reliance on human judgement at the last level makes the budget required for
any kind of zero-cost “equilibrium flip” attack essentially infinite, instead
requiring the attacker to bribe everyone outright and even then resulting
in only a moderately large inconvenience for users, not a total failure. The
process does impose inconveniences to users, but properly built designs that
use decentralized oracle schemes will use the mechanism only as the last step
of a fallback game in a similar function as nuclear deterrence; in practice it
will almost never be used. The security claim essentially becomes something
like “by paying $100 million, an attacker has the ability to force users to
visit their favorite internet forum and locate a 32-byte hash representing the
new fork of the chain to switch to”.

Definition 3.7 (Distributed hash table). A distributed hash table is a mech-
anism which gives network-connected nodes access to a functionGET (ρ, i)→
(V, π) where (V, π) is the Merkle branch of σ[i] where ρ = R(σ). GET should
work with overwhelmingly high probability provided that (i) (V, π) has at
least once been in the hands of at least one altruist, and (ii) the total quan-
tity of data stored in the DHT is at most N∗n

k where N is the computational
and data storage capacity of a node, n is the number of nodes and k is a
constant.

Note. The Merkle-branch-based definition of DHT given above can be de-
duced easily from the more conventional definition of providing a function
GET (h) → x where h = H(x) for some hash function, given that Merkle
tree protocols consist simply of repeated reverse-hash-lookup queries. The
definition used above is more relevant to our “scalable blockchain” use cases.

Example 3.0.4. Kademlia [12] is an example of a distributed hash table. A
more direct implementation of our desired formalism with Merkle branches
will be available from IPFS [13].
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Chapter 4

Global Variables

In the rest of this document we will use the following variables:

• N - the maximum computational power of a node

• L - the level of economic activity in the network

• m - the size of the randomly selected pool of validators that need to
validate each block (usually 50 or 135)

• wa - the portion of weight controlled by altruists

τ will represent transactions, β will represent blocks and block headers
depending on context, and B will represent “super-blocks”.
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Chapter 5

A Byzantine-fault-tolerant
Scalable Consensus
Algorithm

Suppose a construction where the state is partitioned into n ∈ O(N1−ε)
substates, and each substate is itself partitioned into very small parts (eg.
one per account). We define three “levels” of objects:

• A super-block is a block in the top-level consensus process. The header
chain is the blockchain of super-blocks.

• A block is a package containing:

– T , a list of transactions

– D, the set of Merkle branches for the observed area of T on the
fine-grained sub-partition level, ie. where the value proven by
each Merkle branch is only constant-size

– A header, consisting of:

∗ AP , a map {i : R(σ[i]) for i ∈ OBSERV ED(σ, T )}
∗ AN , a map {i : R(σ′[i]) for i ∈ OBSERV ED(σ, T )}
∗ S = [s1...sm], an array of signatures

∗ H(T )

∗ H(D)

• A transaction is a transaction as before.

We use any non-scalable consensus algorithm (eg. Tendermint[21]) for
processing super-blocks, except that we define a custom “top-level” state
transition function APPLY ′. For the state processed by APPLY ′, we use
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ψ = {i : R(σ[i]) for i ∈ [n]}+E(σ) +V (σ) where E(σ) is a cryptoeconomi-
cally secure entropy source in σ and V (σ) is a set of “validators” registered
in σ. From the point of view of APPLY ′, we define a block header β as
being valid in the context of ψ if the following are all true:

• For all i ∈ AP , ψ[i] = AP [i].

• For at least 2m
3 values of i ∈ [m], s[i] is a valid signature when checked

against SAMPLE(W,E(σ)+A,m)[i] where W (σ, ui) = 1
|V (σ)| if ui ∈

V (σ) else 0 and A is the address or public key of the block proposer (ie.
the block has at least 2m

3 valid signatures out of a randomly selected
pool of m).

If β is valid, we set ψ′ by:

• For all i ∈ OBSERV ED(σ, β), ψ′[i] = AN [i]

• For all i /∈ OBSERV ED(σ, β), ψ′[i] = β[i]

The top-level state transition function has an additional validity con-
straint: for the super-block to be valid, the observed areas of all β[i] must
be disjoint from each other.

We do not formally put it into the top-level validation protocol, but we
separately state that a validator is only supposed to sign a block if the block
meets what we will call second-level validity criteria for β:

• Every transaction in T is valid in its context when applied to σ.

• D, AP , and AN are produced correctly.

Lemma 5.0.4. Assuming less than 1
3 of validators are Byzantine, a block

that is valid under the above top-level state transition function will produce
a top-level state ψ′ such that if we define σ′ with σ′ = {i : R−1(ψ′[i])},
σ′ = σ + T1 + T2 + ... where Ti is the set of transactions in βi.

Proof. Suppose that all βi satisfy the second-level validity criteria. Then,
note that each substate in σ is only modified by at most one Ti, and so we can
model the state as a tuple (O,A1, A2, A3...An) if β includes k transactions,
where Ai is the affected area of Ti and O is the remaining part of σ. The state
after T1 will be (O,A′1, A2, A3...An), by disjointness the state after T2 will be
(O,A′1, A

′
2, A3...An), and so forth until the final state is (O,A′1, A

′
2, A

′
3...A

′
n).

If we use the top-level state transition function on ψ, we can partition ψ
similarly into (O,B1, B2, B3...Bn), and a similar progression will take place,
with state roots matching up at every step. Hence the final state at this
top-level state transition will be made up of the roots of the substates in σ′.
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Now, suppose that one βi does not satisfy the second-level criteria. Then,
validators following the protocol will consider it invalid, and so 2m

3 validators
will not be willing to sign off on it with very high probability, and so the
block will not satisfy the top-level criteria.

Hence, we know that the resulting ψ′ will represent a state which is valid,
in the sense that it can be described as a series of transactions applied to
the genesis. This is the validity criterion that we will repeatedly use in order
to prove that validity is preserved by other mechanisms that we introduce
such as revert mechanics.

Because a sampling scheme is inherently probabilistic, it is theoretically
prone to failure, and so we will precisely calculate the probability that the
protocol will fail. Assuming a 96-bit security margin, we can consider a
probability negligible if the average time between failures is longer than the
time it takes for an attacker to make 296 computations. If we assume that
the cryptoeconomically secure entropy source updates every super-block,
and a super-block comes every 20 seconds, then one can reasonably expect
a hostile computing cluster to be able to perform 248 work within that time,
so we will target a failure probability of 2−48 (this implies roughly one fail-
ure per 445979 years of being under attack). We can determine the failure
probability with the binomial distribution formula:

PE(n, k, p) = pk ∗ (1− p)n−k ∗ n!
k!(n−k)!

Where PE(n, k, p) is the probability of an event that occurs with proba-
bility p in an attempt will achieve exactly k occurrences out of n attempts.
For convenience, we define PGE(n, k, p) =

∑n
i=k PE(n, i, p), ie. the proba-

bility of at least k occurrences.
We note that PGE(135, 90, 13) = 2−48.37, so 135 nodes will suffice for a

k = 1
3 fault tolerance. If we are willing to lower to k = 1

5 , then PGE(39, 31, 15) =
2−48.58, so 39 nodes will be sufficient. Additionally, note that if we want
greater efficiency under normal circumstances, then a bimodal scheme where
either 44 out of a particular 50 nodes (PGE(50, 44, 13) = 2−49.22) or 90 out of
a particular 135 nodes is a sufficient validity condition will allow the cheaper
but equally safe condition to work in the (usual) case where there are almost
no malicious nodes, nearly everyone is online and the network is not under
attack, and fall back to the more robust but bulkier validation rule under
tougher conditions.

Additionally, note that the combinatoric formula is only valid if the en-
tropy used to determine validator sets is actually random, or at least close
enough for our purposes. For this, our second uninfluenceability criterion,
stipulating that an attacker with less than 1

3 of all validators will be able
to influence it by at most a reasonably small linear amount (in the NXT
case, by a factor of 3

2), is crucial, showing that with such a powerful attacker
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the probability of a successful attack remains below 2−47.4. The first unin-
fluenceability criterion is important in order to avoid excessive superlinear
returns resulting from super-block proposers manipulating the entropy in or-
der to increase the chance that their validators will be involved in verifying
blocks, but does not affect security.

To see the role of the unpredictability criterion, note that the protocol
as described here provides ex ante Byzantine fault-tolerance, but not ex post
Byzantine fault tolerance; after the validators are selected, only that small
fixed number of validators acting maliciously will compromise the system.
If entropy becomes unpredictable very slowly (or never at all), then the
algorithm is only Byzantine fault-tolerant against faults very far in advance,
leading to potential practical vulnerabilities like an attacker locating the 135
validators that will be validating their block one year from now and taking
the time to locate and hack into 90 of them.

Lemma 5.0.5. The above protocol is scalable.

Proof. The load of a validator consists of two parts:

• validating the header chain

• validating the blocks

For the header chain, note that the size of each super-block is n+k1b+k2,
where n is the size of the state partition (as each index can be included as
an observed area at most once), b is the number of blocks, k is a constant
representing the size of H(T ) + H(D) + [s1...sm], and k2 is a constant for
miscellaneous super-block data (eg. validators entering and leaving, the en-
tropy source, timestamp, previous block hash). We can require n ∈ O(N1−ε)
and b ≤ n so b ∈ O(N1−ε). One can come up with an algorithm to evalu-
ate the top-level validity of the block in less than O(N) time; showing that
observed areas do not intersect as a set non-intersection algorithm can take
up to O(k ∗ log(k)) time for k items and O(N1−ε ∗ log(N1−ε)) < O(N), and
the individual block validations should simply take O(N1−ε) time.

For block validation, suppose that there are v ∈ O(N1−ε) validators.
Each super-block may contain a maximum of n blocks, and n ∈ O(N1−ε).
Thus, in total, validators must process at most m ∗ n blocks (as each block
must be processed by m validators), and so each validator will on average
end up processing m ∗ n/v ≤ O(1) blocks. If each block has O(N1−ε)
transactions, then the computational load of this is m ∗ O(N1−ε) < O(N).
Hence, the total load of a validator is less than O(N) while the network
processes a total of O(N2−ε) transactions.

From a bandwidth perspective, the header chain is sent to everyone, but
for blocks the block proposer need only send the block to the validators
directly, so once again the load per validator is O(N1−ε). The only data
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that a validator needs to verify the block is the observed areas on the sub-
partition level, which are provided with proofs inside of β.

The incentives inside such a scheme would be provided as follows:

• Transactions can pay transaction fees to the producer of the block that
includes them.

• Blocks can pay transaction fees to the proposer of the super-block that
includes them, as well as the the validators that will sign off on them.

• The proposer of the super-block can pay transaction fees to the valida-
tor pool of the super-block; this fee can be mandatory (ie. protocol-
enforced) or enforced by validators refusing to sign a block with a fee
that is too small for them.

• The protocol may optionally add a mandatory fee to transactions and
blocks, and this fee can get destroyed. The protocol may also add
an ex nihilo reward to the validators of the super-block in place of
requiring it to be paid from transaction fees.

We can also require validators to have security deposits of size O(N1−ε)
which are destroyed if the validators are malfeasant, as is standard in modern
proof-of-stake consensus schemes; this provides the basis for an economic
security margin. Note that the fees paid to validators, as well as the deposit
size of a validator, is stored in the header chain alongside the identity of
the validator; only when a validator leaves the pool does the fee balance get
added to the main state.
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Chapter 6

Fallback Schemes

The previous algorithm provided a statistical guarantee of data availability
and validity by simply assuming that at least two thirds of validators are
honest; however, it carries an inherent fragility: if, for any reason, a small
sample of nodes actually does end up signing off on an invalid block, then
the system will need to hard-fork once the fault is discovered. This results
in two practical weaknesses. First, larger safety factors are required on the
sample sizes in order to ensure that a sample is absolutely never malicious.
Second, the economic security of the algorithm, under our formal definition,
approaches zero as L increases if defined as a fraction of L. An attacker will
only need to bribe m out of a total O(N1−ε) validators in order to produce
an invalid block that enters the system. Hence, as N increases, there is no
fixed bound b of proportionality between the weight and the security margin;
the ratio goes lower the larger the system gets. Sampling provides security
against random faults, but not against targeted faults, which bribery can
theoretically achieve.

One approach to dealing with the latter issue is to not bother with eco-
nomic security, and simply rely on Byzantine-fault-tolerance guarantees to
determine security. In order to ensure beneficence of the network maintains
over time, we ask validators to censor attempts to join the validator pool
by parties that appear to be unreliable or likely to be malfeasant. In some
cases, particularly regulated financial systems, such restrictions are neces-
sary in any case and so we need to go no further[22]. If we are trying to
create a more open network, however, then such a solution is unsatisfac-
tory, and so we arguably need not just Byzantine fault tolerance but also
regulation via economic incentives.

If economic security is indeed desired, one natural solution that may be
proposed is a “fallback game”: allow any validator to “challenge” a partic-
ular block’s validity by putting some quantity of funds at stake (if no funds
are at stake, then an attacker can increase load on the network arbitrarily
at no cost), and ask the header chain to be the “validator-of-last-resort”. If
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the data for the block is available, then this is easy: the validator provides
the full block to the header chain, and the header chain validates the block;
if the block is valid, then the challenger loses some portion of their security
deposit, and if the block is invalid then the block is reverted and the valida-
tors that signed the block lose their entire security deposit (and a portion
of that deposit goes to the challenger as a reward). The game that arises
from this scenario can be seen as follows:

Above we assume 1 is the block reward, −δ is an expected private payoff
to the validator of an invalid block getting into the blockchain (all we know
about this payoff is that it is less than zero; it could take any magnitude de-
pending on the situation of the particular validator and ultimately does not
matter for the purposes of the game-theoretic argument), 100 is the security
deposit, 10 is the whistleblower’s reward and −10 is the penalty for whistle-
blowing falsely (ie. on a valid block). Note that the block producer “plays”
first. If the block producer makes an invalid block, then the challenger will
challenge, and so the block producer will earn −100; but by making a valid
block the block producer will earn 1. Hence, the block producer will make
a valid block, and in that case the challenger will earn a higher profit of 0
rather than −10 by not challenging and so will not challenge. Thus providing
a valid block is a subgame-perfect equilibrium.

There are two problems with this scheme as described above. The first
problem is a technical one: although the scheme remains scalable, Byzantine
fault tolerant and economically secure, and even economically secure under
a Byzantine failure or Byzantine-fault-tolerant under an economic attack, it
is not scalable under an economic attack. The reason is that an attacker can
spend L

O(N1−ε) resources by bribing m of the O(N1−ε) validators in order to

elevate any block to the header level, and so by spending b ∗ L effort the
attacker can elevate a total of O(N1−ε) blocks. As soon as the size of a
block is at least O(N2ε) (which happens at L ∈ O(N1+ε)), this means that
by spending b ∗ L effort the attacker can make the protocol non-scalable.

The solution that we propose is a multi-round escalation game: a chal-
lenger proposes a transaction to point out an invalid previous block, and
that transaction will be validated by 2m validators. If either the challenger
or a validator is unhappy with the result, they can then make another chal-
lenge, providing twice as high a deposit but resulting in the block being
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reviewed by 4m validators. Another appeal is possible with a 4x deposit,
which will be reviewed by 8m validators, and so on until all validators par-
ticipate. Game-theoretically analyzing this, one can find that an attacker
that spends b∗L resources can at most increase a node’s computational load
by a constant factor, and recursive elimination of dominated strategies leads
to honesty being a subgame-perfect equilibrium in the normal case.

An alternative approach for ensuring validity is to simply use a succinct
cryptographic proof in place of a cryptoeconomic one, seemingly removing
the need for fallback schemes entirely. A zk-SNARK can theoretically be
attached to the header of a block, proving that all of the transactions in the
block are valid and that the final state roots are correct. However, this has
a few problems. First, zk-SNARKs rely on much less robust cryptographic
assumptions than hashes and signatures; particularly, it is not known if zk-
SNARKs are even possible to secure against quantum computers, whereas
strong candidates for quantum-proof digital signatures are well-known [23]
[24] [25].
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Chapter 7

Data availability

The more difficult challenge in implementing a fallback scheme is that there
are in fact two ways in which a block can be invalid. First, the block
may incorrectly process transactions and have an invalid final substate root.
Second, however, an attacker may simply create a (valid or invalid) block
and refuse to publish the contents, making it impossible for the network to
learn the complete final state. Validating data availability is, unfortunately,
a fundamentally harder problem than validating correctness for a simple
reason: data availability is quasi-subjective at scale. Although one can
determine that a particular piece of data is available at a particular time
by trying to download it, one cannot with perfect precision verify whether
data is available if one does not have enough bandwidth to download all of
it, and one cannot determine at all whether or not data was available at a
previous time if one was not paying attention during that time.

A particular consequence of this is that validating data availability through
cascading fallback, as described in the previous section above, is not so sim-
ple: the attacker can always cheat the system and destroy others’ deposits
by providing a block with unavailable data at first, waiting for a fallback
game to start, and then destroying the security deposits of challengers by
suddenly providing the data mid-game. Although such an attack does not
compromise security, it does allow the attacker to siphon resources away
from challengers, leading to an equilibrium in which it is not rational to
challenge, at which point the attacker will be able to create and propagate
bad blocks unimpeded.

In order to make clear the gravity of the problem, we will start off by
showing several categories of attacks that are possible if data availability
cannot be effectively ensured.

Example 7.0.5 (Unprovable theft attack). An attacker creates a block
with transactions T1 ... Tn, where T1 ... Tn−1 are legitimate and applied
properly but Tn is an invalid transaction which seems to transfer $1 million
from an arbitrary wealthy user to the attacker. The attacker makes T1 ...
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Tn−1 available, and makes the final state available, but does not make Tn
available. Once the state is confirmed by a sufficient number of future blocks,
the attacker than spends the $1 million to purchase other untraceable digital
assets.

Here, note that there is no way to prove invalidity, because theoretically
Tn very easily could be a transaction legitimately transferring $1 million from
the millionaire to the attacker, but the unavailability of the data prevents
the network from making the judgement.

Example 7.0.6 (Sudden millionaire attack). An attacker creates a block
with transactions T1 ... Tn, where T1 ... Tn−1 are applied properly but Tn is
an invalid transaction. The attacker then makes T1 ... Tn−1 available, and
makes most of the final state available, with the exception of one branch
where the attacker has given themselves $1 million out of nowhere. Two
years later, the attacker reveals this branch, and the network is forced to
either accept the transaction or revert two years of history.

Note. One way to try to solve both attacks above is to require every valid
transaction to show a valid “source” of its income. However, this leads to
a recursive buck-passing problem: what if the attacker performs a sudden
millionaire attack to create a new unexplained account A1, then creates a
block with an unavailable transaction sending funds from A1 to A2 (possibly
a set of multiple accounts), then A3, and so forth until finally collecting the
funds at An, and then finally reveals all transactions upon receiving An. The
total dependency tree of a transaction may well have total size ω(N). Peter
Todd’s tree-chains discussion offers the solution[27] of limiting the protocol
to handling a fixed number (possibly ω(N)) of “coins”, each one with a
linear history; however, this solution is not sufficiently generalizeable and
abstract for our purposes and carries high constant-factor overhead.

Example 7.0.7 (Payment denial attack). An attacker creates a block with
an unavailable transaction which appears to modify another party’s account
(or spend their UTXO). This prevents the other party from ever spending
their funds, because they can no longer prove validity.

Note. Even zk-SNARK protocols cannot easily get around the above prob-
lem, as it is information-theoretically impossible for any protocol regardless
of cryptographic assumptions to fully specify the set of accounts that are
modified in a particular super-block in O(N) space if the set itself has ω(N)
Kolmogorov complexity.

Example 7.0.8 (Double-spending gotcha attack). Suppose that a protocol
tries to circumvent payment-denial attacks by making payment verification
a challenge-response process: a transaction is valid unless someone can show
that it is a double-spend. Now, an attacker can create a block containing a
legitimate but unavailable transaction that spends $1 million from account
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A1 to A2, also controlled by them. One year later, the attacker sends $1
million from A1 (which no one can prove no longer has the money because
the data is unavailable) to A3. One year after that, the attacker reveals the
original transaction. Should the network revert a year of history, or allow
the attacker to keep their $2 million?

Note. Zk-SNARK protocols are not a solution here either, because of the
same information-theoretic issues.

In order to remove the possibility of such issues in the general case, we
will try to target a hard guarantee: given a general assumption that once
data is available at all it is guaranteed to remain available forever due to
a combination of the DHT and altruist-operated archival services, we will
attempt to ensure that, for all blocks β, it is the case that either β is available
or β is reverted.

The largest game-theoretic threat to fallback schemes handling the prob-
lem by themselves is, as discussed above, the “crying-wolf attack”: an at-
tacker repeatedly produces valid blocks with unavailable data, waits for a
fallback process to start reverting them, and then immediately publishes the
data, thereby discrediting the agents that contested the block in the eyes
of all other viewers that did not have ther eyes on that particular block at
the time that the incident was taking place. In order to prevent the process
of contesting the block from becoming an attack vector, the process of con-
testing must be costly if it ends up being a false alarm; hence, eventually all
challengers will be weary of wasting their resources, allowing the attacker to
carry out unavailable-data attacks with impunity.

We can formally model this as follows, letting cc be the cost of raising a
challenge, rc the reward of challenging successfully, cb the cost of producing
an errant block, cv the cost of viewing a block, B the block size, n is the
number of blocks and nv is the number of validators.

• We know that n is proportional to nv, since each validator can validate
at most a fixed number of blocks.

• We know that cb, cv and B are proportional to each other, since the
block size is proportional to L

n where n is the number of blocks, the
cost of viewing a block is equal to the effort spent downloading it, and
cb is bounded above by a validator deposit, which is also proportional
to L

n . There is no reason to make cb less costly than needed, so setting
cb to the entire deposit is prudent.

• We know that cc must be at least proportional to L
n = B, as otherwise

an attacker of size ε ∗ L would be able to repeatedly challenge every
block. Note that cc is proportional to B also allows an attacker of
size b′ ∗ L for some b′ to challenge every block; however, the degree
of fallback escalation which the attacker can afford is bounded by a
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constant, whereas if cc < O(B) then the degree of escalation leads to
a strictly complexity-theoretically greater level of attention on each
block - and if this increased level was scalable then the protocol would
have had it by default in the first place.

• We know that cr ≤ cb, as otherwise producing errant blocks and then
calling them out would be a profitable strategy. Since cb is proportional
to B, we know that cr is proportional to B.

• Hence, cc is proportional to cr, so there is some constant k = cc
cr

.

• A node starts off having some prior probability distribution D over the
probability p of a random invalid block later revealing data. Assume
for simplicity that this prior was derived from Laplacian succession[28]
with s instances of later revelation and f instances of non-revelation.
After f ∗ k repeats of producing a block with invalid data and later
revealing it, a node will rationally assume that the next block will have
revelation probability s+f∗k

s+f+f∗k > 1− 1
k .

• Hence, it will not be rational for that node to issue a challenge when
the next block with unavailable data appears.

This model is not intended to cover all possible scalable protocols - and
indeed it can’t, since we claim that there are in fact solutions; rather, it is in-
tended to illustrate the general difficulty. Challenging this strategy requires
irrational sacrifice of resources, either on the part of the challengers which
would end up continuing to challenge blocks despite negative expected re-
turn or on the part of other actors that start issuing blocks with unavailable
data without ever publishing the data purely in an attempt to manipulate
challengers’ posteriors in a positive direction.

We provide two possible sets of solutions to this problem. The first is to
simply capitulate to the crying-wolf attack, and explicitly require challenging
to be a costly and potentially altruistic activity. The protocol in this case
would work as follows:

• After a block is published, initialize i = 0. Anyone has the ability to
lay down a “challenge” against the block at cost c within the next Fd
blocks (eg. Fd = 20). Challenging happens at the superblock level (ie.
it is part of the top-level state transition function).

• Once at least k ∗ 2i challenges are laid (eg. k = 5), the block enters
“purgatory”. Once in purgatory, the block remains there until it is
either “rescued” (see below) or it remains there for Pd blocks (eg.
Pd = 40) at which point the block is reverted.

• Rescuing a block requires a “rescue” transaction, which requires sig-
natures from two thirds of a random set of 2i+1 ∗m validators (eg. 180
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of 270 at i = 0). This also happens at the superblock level, and the
producer and validators of a successful rescue transaction are given a
small reward (eg. c

3m per validator plus c
3 to the producer).

• Once a block has been rescued, the Fd time restarts, increment i ←
i + 1, and the block can be challenged again. Note that each time
the cycle repeats, the required number of challenges and the required
number of validators on a rescue doubles.

• If a block is rescued by the entire network, then it can be considered
final.

• If a block is challenged but never rescued, then the security deposits
of the block producer and all validators that signed the block are
destroyed, and equally split among challengers.

Under normal circumstances, challenging is thus profitable; it is only
during a crying-wolf attack (which has a very large constant-factor cost,
perhaps even enough to make it not the weakest link in all but the largest
O(N2) systems) that is becomes altruistic. Because anyone can challenge,
one cannot bribe “the challengers” not to challenge; in fact, doing so will
simply motivate the challenger to challenge again using a different identity.
An attacker with at most n∗c resources can force at most 2∗n∗m validators
to check availability on a block, and so if we set c ∈ N1−ε, we can see that an
attacker with b∗L ∈ O(N2−ε) resources will be able to force 2∗m∗O(N1−ε)
validators to check a single block, increasing their computational load by
a constant factor; hence, the system cannot be subjected to a denial-of-
service attack except at cost b∗L where the value of b depends on c (there is
a linear tradeoff between requiring more altruism and being more susceptible
to denial-of-service attacks).

We also add a rule that the producer of a block is slightly penalized if
it is challenged sufficiently, even if it is later vindicated. This allows us to
establish a bound on the ratio of losses to altruists to losses to the attacker,
allowing a bound to be determined on the minimum required budget of an
attacker assuming altruists are willing to lose L∗k ∗wa for some constant k.
Note that rescuing legitimately is a very low-risk activity; since a validator
should possess the entire data of a block themselves, they have the ability
to convince any larger sample of validity if necessary.

A possible scheme for removing the need for altruism even in extremis
works as follows. First, we require the proposer for each superblock to com-
pute a small amount of proof of work, perhaps with per-superblock cost
w = r ∗ 0.01 where r is the superblock reward. Proof of work is required to
provide a highly secure cryptoeconomic entropy source which is completely
unpredictable; alternatives such as NXT can far too easily be foretold in
advance. From this value, we then select a random substate, and we ask
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all top-level validators to check availability on the most recent block in that
substate. If the block is indeed unavailable, and the block has been chal-
lenged, then the challengers split a reward of size rc = w ∗ 0.49 ∈ O(N2−ε).
The superblock proposer also gets a reward of equal size.

The scheme can be thought of an inverted application of a standard
result from law and economics: one can achieve compliance with arbitrarily
low enforcement cost by simply decreasing the level of enforcement, and thus
the probability of getting caught, but simultaneously increasing the fine[26]
- except, in our case, we are performing the exact opposite task of a police
department as we are trying to incentivize a virtuous usually-costly action
with the occasional application of a reward. The load each validator is at
most the cost of downloading one block, O(N1−ε), and each substate will
have a propbbility of at least 1

O(N1−ε) of being randomly inspected; hence the

scheme does not compromise scalability. However, assuming that a top-level
challenge has at least a fixed probability p of correctly determining that an
unavailable block is unavailable before the attacker manages to broadcast it
across the network, this provides an average incentive of rc

O(N1−ε) ∈ O(N)

in order to challenge, making it statistically worthwhile to challenge invalid
blocks despite the cost.

Note that it is expensive for the challenger to manipulate the proof
of work either upward or downward. Once the challenger has computed
the proof of work successfully, a bribe of size rc ∈ O(N2−ε) is required to
dissuade him from starting the top-level challenge procedure for the entire
block, and with judicious choice of constants one can make the bribe exceed
our desired threshold b∗L. If the challenger wants to increase the probability
of triggering a top-level challenge in order to earn the rc reward, possibly in
collusion with the challengers, then note that even if the attacker has placed
an invalid block on all substates, re-computing the proof of work has cost
w and maximum expected collective reward w ∗ 0.98.

Given that the expected reward of challenging is now w
N1−ε , we can im-

pose a cost of challenging of at most the same value, and so the level of
denial-of-service protection we get against challenges is proportional to the
quantity of proof of work employed. One can increase the ratio drastically
at the cost of limiting ourselves to a more qualified security bound by setting
rc = k ∗ w for some k > 1, making proof-of-work manipulation profitable
only if 1

2k of substates currently have an invalid block in them (due to the
extreme cost of producing an invalid block, we can hence make k quite high).

The second set of solutions to this problem involves changing the question
asked to the fallback game: instead of asking the fallback game to adjudicate
on the question of whether the data is available, have it adjudicate on the
question of whether the data was available. This would then be combined
with some kind of strategy which each node would use to efficiently determine
whether or not every challenge was valid as soon as it is made. There are
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two most promising contenders for such strategies. First, one can require the
data of a block to be erasure coded, such that the data can be fully recovered
if at least 50% is available; this allows each node to probabilistically evaluate
total availability by randomly accessing a sample (without erasure coding,
a 99% available block can easily slip through scrutiny). Second, one can
require each node to independently pick a random sample of challenges to
evaluate, and provide the Merkle root of the set of evaluations to other
nodes. Other nodes would then probabilistically check the correctness of the
Merkle roots that they receive through sampling, and would then themselves
send out a Merkle root of all Merkle roots that they consider trustworthy.
This can theoretically be made resistant to bribery because transmission of
Merkle roots is private and so there is no way for a node to prove to a briber
that they sent a compromised Merkle root.

For simplicity, we recommend not applying either of the more advanced
strategies due to their greater complexity, and simply relying on altruism
in extremis, noting that in practice attempts to bribe validators have not
proven to be a problem in cryptoeconomic systems in practice. If crying wolf
attacks become a problem, particularly in the more highly scalable variants
we describe in a later section, then we prefer the random block selection
game due to its greater simplicity.
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Chapter 8

Reverting

A critical mechanism used in the previous sections is the concept of reverting
a block if it is found to be invalid. However, it is necessary to come up with
a scheme to do so with minimal disruption, reverting only what needs to
be reverted while keeping the remaining state transitions intact. To do
so, we propose the following mechanism. When an invalid block is found
and agreed upon, construct a “dependency cone” of all substates that could
have been affected by that block, and revert each substate to a prior “safe”
state. The algorithm for this relies on a primitive we will call GDC (“get
dependency cone”), which takes a target state σ, an errant block β0 inside
a super-block B and the post-super-block state σ0 = σ−1 +B, and outputs
a partial mapping of index to substate. We define GDC as follows:

• GDC(σ, σ0, β0) = ∅ if σ ∈ ANC(σ0)

• GDC(σ0, σ0, β0) = OBSERV ED(σ0, β0)

• GDC(σ+B, σ0, β0) =
⋃
β∈B:GDC(σ,σ0,β0)∩OBSERV ED(β)6=∅OBSERV ED(σ, β)

∪GDC(σ, σ0, β0)

Assuming an invalid block β0 inside a super-block B with prior state σpre,
and assuming the current state is σf , we useGDC(σf , σpre+B,OBSERV ED(σpre, β0))
to get the total set of substates to be reverted. Then, for each substate index
i, we locate the state σi such that i ∈ GDC(σi+B, σpre+B,OBSERV ED(σpre, β0))
but i /∈ GDC(σi, σpre+B,OBSERV ED(σpre, β0)), and simply revert σ′f [i]←
σi[i], ie. revert every substate to just before the point where it got into the
“cone” of potentially invalid blocks.

Lemma 8.0.6. The state obtained after reverting as above is valid.

Proof. For the sake of simplicity, suppose that every super-block contains
a block modifying every substate; if not, then we assume a phantom “null
block” for each unaffected substate i with AN = AP = {i : R(σ[i])}. First,
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note that the area of the “dependency cone” during each super-block corre-
sponds exactly to the combined area of some set of blocks; it cannot partially
include any block because the definition states that if the area of a block
is partially included it must be fully included, and it cannot include area
unoccupied by blocks because of our siplifying assumption. Then, for each
super-block β, let D(β) be the set of blocks in the dependency cone of the
post-state of that block in the blockchain, and U(β) be the set of blocks not
in the dependency cone. If σf = σpre + β1 + β2 + ..., the post revert state
σ′f will correspond exactly to σpre + U(β1) + U(β2) + ....

We will show why this is true by illustration. Consider a sequence of
states with a set of blocks updating the state during each super-block:

Now, suppose that one of those blocks is invalid. Then, if we manage to
revert immediately in the next block, the state will be moved to the red line
here:

And if we revert later, the state will be moved to the red line here:

Notice that one can apply the set of still-valid blocks sequentially to σ
to obtain σ′f in all cases.

It is important to note that the revert process is scalable only if the
number of substates that an attacker can revert with a single invalid block
is bounded, assuming some bound on the amount of time that it takes for
the bad block to be detected and for the revert to be included. Otherwise,
the attacker can annoy all users by paying less than b ∗ L cost, and so the
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algorithm will no longer be scalable under attack. In order to achieve this,
we have two solutions. First, we can specify that each block can have a
maximum area size k for some fixed k; the number of substates reverted
assuming a revert after l blocks will then be bounded above by kl. The
other approach is to require blocks with area larger than k substates to have
proportionately more validators; eg. a block with area of size 4k substates
should require 8m

3 signatures out of a pool of 4m in order to be valid. Both
strategies ensure scalability under attack.
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Chapter 9

Stacking

The above schemes provide scalability up to O(N2−ε). But can we go
higher than that? As it turns out, the answer is yes; we can in fact achieve
scalability of O(Nd−ε) for arbitrary d while satisfying both economic and
Byzantine-fault-tolerance guarantees. We accomplish this by essentially lay-
ering the scheme on top of itself. Essentially, we define a generalized trans-
form T (APPLY, V T,N, d) where APPLY is a state transition function,
V T (F, s)→ F ′ is a function which takes a state transition function F and a
maximum header chain size s and outputs the top-level state transition func-
tion F ′ (eg. the algorithms we defined above can be seen as implementations
of V T ), N is the maximum computational load and d is the depth.

We define T as follows:

• T (APPLY, V T, 2) = V T (APPLY,N1−ε)

• T (APPLY, V T, d) = T (V T (APPLY,Nd∗(1−ε)), V T, d− 1) for d > 2

We maintain the restriction that all objects produced at any point must
have a soft maximum size, above which the number of validators required
to agree on that object increases proportionately.

The definition is simple, and so somewhat obscures the complex inner
workings of what is going on. Hence, let us provide an example. Consider a
transform of the fallback-plus-subjective-resolution scheme provided above
with d = 3. There would now be four “levels” of data structures. At
the bottom level, we have the ultimate transactions that are affecting the
state. Then, on the third level we have blocks containing those transactions.
To validate blocks on this third level, there are O(N2−ε) validators (each
with a deposit of size O(N)), which are recorded on the second level; a
block on the third level must obtain signatures from 2m

3 out of a pool of m
validators obtained from the entire pool of second-level validators. However,
the process of verifying that signatures from the correct validator pool are
provided itself depends on data that is not shared globally (as it is on the
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second level), and so that process itself as a state transition function needs to
be carried out using the two-level scalable protocol, ie. a second-level block
would treat the second-level validators accessed by all third-level blocks
contained inside of it as part of its “observed area”. Blocks containing these
transactions would themselves be voted on by the header chain, which has
O(N1−ε) validators each with a deposit of size O(N2).

At this point, the algorithm almost has O(N3−ε) scalability, but not
quite. There are two reasons why. First, note that each third-level block
independently picks m validators. Hence, if a second-level block has O(N)
transactions, and assuming that there are O(N) second-level substates, we
can expect a single second-level block to have an observed area of size 1− 1

em

of the whole set of substates - which for even the highly unrealistic m = 5
amounts to almost all of it. Hence, there can be at most one second-level
block, and so our scalability is right back to O(N2−ε).

To solve this problem, we make a moderate change: we say that the
set of validators for any transactions should always be determined from the
state at the start of the super-block. Formally, we say that a superblock has
two “virtual transactions” σ → (σ, σ) at the start, and then (σ, σ′)→ σ′ at
the end, and validators are selected from the left pool, not the right pool.
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This allows us to have validators be selected from anywhere in the state
without including them into any observed areas. From an implementation
perspective, this means that a block at any level would need to come with
signatures [s1...sm] and also Merkle proofs [π1...πm] where πi proves that
the validator Vi that produced signature si is indeed at the correct position
in the validator pool of the super-block’s pre-state.

Second, note that “fallback” mechanisms all eventually lead to all val-
idators in their validator pool processing a particular block, and producing
a transaction which contains all of their signatures. Here, our largest val-
idator pool is of size O(N2−ε), and so at least one node somewhere will have
to process O(N2−ε) signatures. To solve this, we institute an additional
rule: when the number of validators reached by a fallback scheme exceeds
O(N1−ε), the next level of validation will return to m validators, but one
level higher.

Now, consider the effort done at each level. In the header chain, we have
O(N1−ε) validators, and each validator must on average perform top-level
verification on m blocks as before. On the second level, there would be
O(N2−ε) validators, and there would be a total of O(N2−ε) blocks being
produced, and so on average each validator would need to perform top-level
verification on m blocks. A second-level block producer would select an
area A of k second-level substates, and fill the block with third-level blocks
that have an effect inside that area; from the second-level validator’s point
of view, the third-level blocks look just like transactions would under an
O(N2−ε) scheme, except with the difference that the validity condition re-
quires verifying m signatures. A third-level block producer would select an
area of third-level substates, and fill the block with transactions that have
an effect inside that area. Assuming the second-level block producer in-
cludes O(N1−ε) third-level blocks, and a third-level block producer includes
O(N1−ε) transactions, all actors inside the system have less than O(N) load.

Suppose that the scheme is attacked, by means of a successful invalid
block with transactions at depth d and header at depth d − 1. Then, chal-
lenges would be placed at depth d − 1, and eventually the block’s time in
purgatory would expire and the revert procedure would happen, reverting
the substate roots at depth d− 1. The reversion process would itself require
an object at depth d − 1 in order to process. Because the total economic
volume is O(Nk−ε), and there are O(Nd−ε) validators at depth d, the cost of
bribing m validators at depth d would be m∗Nd−k, and the block would in-
convenience roughly O(Nd−k) users, so a proportionality of attacker cost to
network cost is maintained. The same escalation argument as before shows
that the scheme does not become unscalable until the attacker starts making
economic sacrifices superlinear in the economic activity in the blockchain.

In practice, we expect that the extra complexity in implementing such
an ultra-scalable scheme will be sufficiently high that cryptoeconomic state
machine developers will stick to simpler two-level scaling models for some
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time. However, the result is important as it shows that, fundamentally, the
level of overhead required in order to have a blockchain of size L is roughly
m ∗ log(L), a very slowly-growing value. With clever use of zk-SNARKs,
perhaps even a completely constant-overhead approach for blockchains of
arbitrary size can be achieved.
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Chapter 10

Strategy

The above sections described the algorithms that can be used to convert
a state transition function into validity criteria that can be used in order
to build a scalable blockchain architecture out of traditional non-scalable
components. However, there is also a need to develop higher-level strategies
that would be used by validators in order to allow a maximally expressive
set of state transitions to effectively execute.

One major category of strategy that must be developed is for index se-
lection. Each block producer must determine what set of substate indices
they will be keeping up to date on the state for, and be willing to produce
blocks containing. In the event that transactions requiring a larger area
appear, the groups of block producers will likely need to somehow cooper-
ate in order to be able to produce a block containing the combined area.
One possible strategy is for validators to arrange substate indices in a k-
dimensional space, and maintain up-to-date knowledge of σ[i] for either a
radius-r cube or at least two adjacent substates. An alternative approach,
specialized to simpler state transition functions involving sending from A to
B (such as that of Bitcoin), is to maintain (i, j) pairs and update i and j of-
ten. A third approach is adaptive: use some kind of algorithm to determine
which substate indices appear together most often, and try to keep track
of an increasingly contiguous cluster over time. If transaction senders also
adapt their activities to substate boundaries, the co-adaptation process can
potentially over time create highly efficient separations.

Additionally, note that index selection also becomes a concern when one
or more blocks is in purgatory. In this case, a block producer producing a
block on top of a block in purgatory has the concern that their block may
be reverted. Hence, a possible strategy that block producer may employ
in that case is to compute the dependency cones of all presently challenges
blocks, and refuse to produce blocks that are fully or partially inside any
such dependency cone. In that case, however, the block producer may also
wish to check availability on the contested block themselves, and if it is
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contested create a rescue transaction.
The other category of strategy is for transaction sending, particularly

in the context of more complex state transition functions like that used in
Ethereum. If a transaction only affects a few neighboring substates, then
an index selection strategy as above will be able to provide easy and global
transfer. However, what happens if an action needs to be performed that has
wide-reaching effect, and it is impractical to put it into a single block? In
this case, one option is to set up an “asynchronous routing” meta-protocol:
if a transaction affects state σ[i] but also needs to effect a change in σ[j],
then if it is acceptable for the latter change to be asynchronous we can have
a message be passed through a “network” of contracts, first to a contract
in a state neighboring σ[i], then hopping progressively closer to σ[j] during
subsequent transaction executions until finally arriving at σ[j] and effecting
the desired change. Note that this is equivalent to the hypercubes [29]
strategy developed for Ethereum in 2014; but instead of being a core part
of the protocol, the protocol has been abstracted even further out allowing
hypercubes to simply be one of the many possible strategies that the protocol
can lead to.

If the primary purpose of a blockchain is to act as a currency system,
then as long as sufficient liquidity exists one can get by with a very low
amount of interoperability. For example, even if it is only possible to move
funds between substates every 1000 blocks, and even then only through a
single central “hub state” (which is assumed all nodes store as a strategy),
that limited movement provides enough fungibility for the currency units
in the various substates to maintain fungibility. Cross-substate payments
can be done by means of various decentralized exchange protocols, treating
the different substates as different currencies with the only difference being
that the currency exchange rate will always remain equal to 1. However,
it is debatable whether this approach is preferable to the other strategy
described above of having block proposers select random (i, j) pairs.

Finally, there is the protocol-level decision of how to maintain the divi-
sions between substates and grow and shrink the total number of substates
if necessary. There are several categories of solution here:

• Employ an adaptive algorithms, perhaps adapting Karger’s minimal-
cut algorithm [30], in order to split and join substates over time. Note
that this can be done at the strategy level, giving the top-level con-
sensus the right to split and join substates arbitrarily, but making it
economically efficient for them to make splits that create a minimal
cut. One disadvantage of this approach is that if transaction fees are
priced so as to disincentivize cross-substate activity, fees for specific
operations become unpredictable since substates can be rearranged.

• Create new substates every time existing substates get too large, and
incentivize users that marginally care less about network effect to act
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in those substates by lowering transaction fee pricing. This removes
the ability to make arbitrary splits, but also leads to unpredictable
pricing since prices do need to go up to incentivize users away from
high-activity substates - although the pricing would be far more even
and less discretionary.

• Allow users to set the location of objects in the state with arbitrary
fineness, but with increased cost for higher degrees of fineness. Hence,
objects that need to be very close to each other can pay the cost
for extreme co-location, whereas other objects can place themselves
further apart. This is the strategy undertaken in Gavin Wood’s fiber-
chains proposal[32].
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Chapter 11

Further optimizations

The algorithms described above are meant to be starting points, and are
by no means optimal. The primary areas of optimization are likely to be
fourfold:

• Reducing the limits imposed on state transition functions while main-
taining identical levels of scalability

• Achieving constant-factor gains by increasing efficiency of Merkle proofs,
block sending protocols, safely reducing the value ofm, reducing churn,
etc.

• Increasing block speed

• Making reverts less harmful by using inclusive blockchain protocols
(ie. if β1...βn is the set of blocks that was reverted, and σ′f is the
post-revert state, automatically update to σ′′f = σ′f++β1++...++βn).

• Providing the option for even higher gains of efficiency but at the
cost of less-than-perfect guarantees of atomicity, ie. reducing m to 8
with the associated cost gains but with the understanding that the
action happens within a cordoned-off area of the state where invalid
transitions will sometimes happen.

For the first of these, the most promising direction where one can find
easy immediate gains is to try to separate observed area from affected area.
Theoretically, there is no interference risk if two blocks in a super-block share
observed areas, as long as that observed area is not any block’s affected area.
The challenge is (i) figuring out what hard limits to impose on a block in
order to make sure that the scheme remains scalable (eg. if there are n

2
blocks each using {n2 + i} as their observed area and [n2 ] as their observed

area, the super-block will have n2

4 hashes and will thus be unscalable), and
(ii) figuring out how to manage reverts.
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If one wants to go even further, one can allow the affected area of one
block to be the observed area of another block, as long as one can arrange
all blocks in an order such that each block is observed before it is affected.
But there is a fundamental tradeoff between expressivity and fragility: the
more the state transition function is able to process synchronous updates of
very many and arbitrary states, the more costly a successful attack becomes
if it must be reverted.

For the second, the largest tradeoff is likely to be that between churn and
security. If one can keep the same m nodes validating the same substates for
a longer period of time, eg. half an hour, one may be able to reduce network
load. However, keeping a constant pool for too long makes the scheme more
attackable.

For the third, the most likely source of gains will be improvements in the
underlying non-scalable consensus algorithm used to maintain consensus on
the top-level state ψ. Inclusive blockchain protocols such as those developed
by Sompolinsky and Zohar [31] are a potential route for minimizing disrup-
tion under ultra-fast block times, and such protocols can also be used for
the fourth goal of mitigating the impact of reverts.

For the fifth, an ideal goal would be to have a blockchain design which
allows users to pick a point on the entire tradeoff space between cost and
probability of failure, essentially capturing in the base protocol concepts like
“auditable computation” [5] (where computation is done by a third party by
default, but if an auditor finds the third party provided an incorrect result
the auditor can force the execution to be re-done on the blockchain and if
the third party is indeed in the wrong it loses a security deposit from which
the auditor will be able to claim a bounty).

Finally, there is plenty of room for optimization in strategies, figuring
out how validators can self-organize in order to maximize the expressivity
of the state transition function in practice. The ideal goal is to present an
interface to developers that “just works”, providing a set of highly robust
abstractions that achieve strong security bounds, freeing developers of the
need to think about the underlying architecture, math and economics of the
platform unless absolutely necessary. But this problem can be solved much
later than the others, and solutions can much more easily continue to be
iterated even after the underlying blockchain protocol is developed.
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