The Bitcoin Backbone: Analysis and Applications

Juan Garay (Yahoo Labs)Aggelos Kiayias (U. of Athens)Nikos Leonardos (U. Paris Diderot ─ Paris 7)

Decentralized Payment Systems

- Traditional *e-cash* (D. Chaum,…): centralized approach
- \blacksquare First decentralized "cryptocurrency" ─ Bitcoin ─ announced in 2008
- \blacksquare January 2009: the Bitcoin network is created. A number of other crypto currencies follow suit
- \blacksquare High impact; a number of other potential applications: contracts, reputation systems, name services, etc.

Bitcoin Players

Miners

- Do work to maintain the transactionledger
- Get rewards for their work:
	- i. fees
	- ii. new bitcoins

Payers

• Broadcast a transaction statingthey send bitcoin

Payees

• Have to generate ^a Bitcoin address

• Rely on security of digital signatures to ensure money is not stolen

• Have to verify their address is credited

Valid Transactions

- Transactions are organized by miners in a *transaction ledger* τ
- There is a well-defined public predicate that given a transaction ledger and a transaction decides whether the transaction "makes sense"

Valid(τ,tx) <mark>c {True, False}</mark>

■ Each miner will accept a transaction only if it is valid given its local view of the ledger

Double-spending Bitcoin

The "litmus test" for any payment system

 \blacksquare Double-spending transactions are inconsistent:

tx_b c τ \rightarrow Valid(τ,tx_{1-b}) = False

- No honest miner will accept an invalid transaction
- \blacksquare As long as miners agree on ^τ no double-spending is feasible

YAHOO

Double-spending Bitcoin (2)

- If single miner exists, then double-spending is infeasible but Bitcoin would be guaranteed solely by that entity
- How to facilitate multiple miners while preventing double-spending?
- How to scale this to thousands... millions... of users at a global scale and maintain security?
	- No PKI or authenticated channels, so standard secure multi-party computation (MPC) [Yao82, GMW87] techniques <u>cannot</u> be used (cf. [SD14])

Answer: Proofs of Work (aka "Time-Lock" Puzzles) [DN92, RSW96, Bac97, JB99]

 $Q(\cdot,\cdot)$: Polynomial-time predicate

Using POWs

Miners collect a set of transactions

tx = $(tx_1, tx_2, ..., tx_i)$

 \blacksquare Then do "work"

> i $i := 0$; while Hash(i; Hash(τ , τ **x**)) > D do i++

 \blacksquare If while loop terminates broadcast (^τ,i,**tx**) (new "block")

Using POWs (2)

■ If a vector (τ',i',**tx**') is received, check

(τ ⁼^τ') ˄ (Hash(i'; Hash(^τ,**tx**')) ≤ D)

 \blacksquare Expand the transaction ledger

τ := τ'║**tx**'

(called a "blockchain" $-$ denoted C)

Longest Chain Wins

- Size *does matter* in Bitcoin:
	- If $(T \neq T)$ then miners compare their respective sizes in terms of \mathbb{R}^n number of blocks
	- Miners' basic rule: If my chain is not smaller, I keep it; else I switch to the new one

Analyzing the Bitcoin Protocol

- Nakamoto: Initial set of arguments of why Bitcoin prevents doublespending attacks
	- Wait for the transaction that gives credit to advance into the blockchain a number of k blocks, then prob. of attacker building another blockchain drops exp'ly with k
- Adversary vs. honest player working on a chain perform a random walk
- Assuming an honest majority the adversary cannot "catch" the honest players
- Nakamoto's analysis can be easily seen to be limited
	- The adversary can be more creative than just mining in private until he obtains a longer chain. E.g., it can broadcast conflicting chains to different sets of honest miners in order to split their mining power

Our Work

- Analysis of Bitcoin in a general adversarial model
- We extract, formally describe, and analyze the core of the Bitcoin protocol $-$ the *Bitcoin backbone*
- Protocol parameterized by three application-specific external functions
	- V(·): content (of chain) validation predicate
	- I(·): input contribution function
	- R(·): chain reading function

Our Work (2)

- Two fundamental properties of the Bitcoin backbone, assuming (1/2)-bounded adversary and high network synchronicity
	- Common prefix: After adequately "pruning" their local chains, honest parties share a common prefix
	- *Chain quality*: Guaranteed ratio of blocks contributed by the honest parties

 Note: Rather abstract properties of distributively maintained data structure

Our Work (3)

YAHOO!

Model

- **Protocol executed by fixed no. of parties n (not necessarily known to** participants); (active/"rushing"/adaptive) adversary controls a subset
- Underlying graph not fully connected; messages delivered through "diffusion" mechanism ("Broadcast")
- Parties *cannot* authenticate each other; adversary can "spoof" source of message
- Assume time is divided in rounds; within each round all messages are delivered
	- Important in terms of Bitcoin's inherent assumption regarding the players' ability to produce POWs

Model (2)

- \blacksquare "Flat model:" In a single round, all parties are allowed the same number of queries to a cryptographic hash function, modeled as a random oracle [BR93]
	- •"q-bounded synchronous model"
	- t < n parties controlled by adv. → t·q queries/round
	- t < n/2 corresponds to adv. controlling strictly less of the system's total "hashing power"

Model (3)

Let

 $p = D/2^k$: prob. of POW solution

- α: Expected POW solutions by honest parties in a round
- β: Adversary's expected POW solutions in a round

 $f = \alpha + \beta$ (Total/System's POW rate)

 $\gamma = \alpha - \alpha^2$ (Lower bound on prob. that exactly one honest party computes a POW solution in a round)

- Assume $\gamma > \lambda \beta$, λ \in $[1, \text{CO})$

• Relation between "good" and "bad" hashing power

The Bitcoin Backbone Protocol

Algorithm 4 The Bitcoin backbone protocol, parameterized by the *input contribution function* $I(\cdot)$ and the *chain reading function* $R(\cdot)$.

1: $\mathcal{C} \leftarrow \varepsilon$ 2: $st \leftarrow \varepsilon$ 3: $round \leftarrow 0$ 4: while TRUE do $\tilde{\mathcal{C}} \leftarrow$ maxvalid(\mathcal{C} , any chain \mathcal{C}' found in RECEIVE()) $5:$ $\langle st, x \rangle \leftarrow I(st, \tilde{\mathcal{C}}, round, \text{INPUT}(), \text{RECEIVE}()$ \triangleright Determine the x-value to insert. $6:$ $\mathcal{C}_{\text{new}} \leftarrow \text{pow}(x, \tilde{\mathcal{C}})$ $7:$ if $C \neq C_{\text{new}}$ then 8: $C \leftarrow C_{\text{new}}$ $9:$ $BROADCAST(\mathcal{C})$ $10:$ end if $11:$ $round \leftarrow round + 1$ $12:$ if $INPUT()$ contains READ then $13:$ write $R(x_c)$ to OUTPUT() $14:$ end if $15:$ 16: end while

18The Bitcoin Backbone: Analysis and Applications **YAHOO**

Our Work (2)

- Two fundamental properties of the Bitcoin backbone, assuming (1/2)-bounded adversary and high network synchronicity
	- Common prefix: After adequately "pruning" their local chains, honest parties share a common prefix
	- *Chain quality*: Guaranteed ratio of blocks contributed by the honest parties

 Note: Rather abstract properties of distributively maintained data structure

Common Prefix Property

Definition (Common prefix, w/ param. k). For any pair of honest parties P_1, P_2

$$
C_{1,[k} \le C_2 \text{ and } C_{2,[k} \le C_1
$$

20The Bitcoin Backbone: Analysis and Applications

YAHOO

Common Prefix Property (2)

YAHOO!

Common Prefix Property (3)

 Definition. (Common prefix, w/ param. k) For any pair of honest parties P_1, P_2

$$
C_{1,[k} \le C_2 \text{ and } C_{2,[k} \le C_1
$$

Theorem (Common prefix, w/ param. k). Let $\lambda^2 - f\lambda - 1 \ge 0$. No matter the adversary's strategy the chains of two benest parties satisfy the the adversary's strategy, the chains of two honest parties satisfy the common-prefix property with probability

YAHOO

 $1 - e^{-\Omega(k)}$

22The Bitcoin Backbone: Analysis and Applications

Common Prefix Property (4)

- **Common-prefix theorem:** (proof idea)
	- Uniform round: Round where all honest parties invoke a POW with a chain of the same length
	- Uniquely successful round: Round when exactly one honest party is successful

YAHO_C

Common Prefix Property (5)

- $\mathcal{L}_{\mathcal{A}}$ **Common-prefix theorem:** (proof idea, cont'd)
	- Uniform uniquely successful rounds allow parties to reach a "convergence block"
	- To maintain a "fork," adv. must produce a POW for each convergence block
	- The rate of u.u.s. rounds is $(1 \beta)\lambda$

In order for the adversary to maintain a fork for a certain length β > $(1 - \beta)\lambda$

This is equivalent to λ²− fλ − 1 < 0 [→] **…** (Chernoff bounds)

24The Bitcoin Backbone: Analysis and Applications YAHOO

Common Prefix Property (6)

- Only if f \rightarrow 0 we can let $\lambda \rightarrow 1$ (fast information propagation)(adversarial tolerance up to 50%)
- (Golden Ratio)As f \rightarrow 1 we have $\lambda \rightarrow (1 + \sqrt{5})/2$

Adversarial bound (y-axis) wrtnetwork synchronization f (x-axis) so that common prefix is ensuredin Bitcoin (blue) vs. Bitcoin withlexicographic tie-breaking (red)

Chain Quality Property

Theorem (Chain quality). Any sequence of *l* blocks in an honest party's chain will contain 1 1⁽¹⁾ proportion of beneat blocks with probability chain will contain 1− 1/^λ proportion of honest blocks with probability

1 – $e^{-\Omega(\ell)}$

 $\textcolor{red}{\bullet}$ The theorem is tight

- There is an adversarial strategy that restricts the honest parties to a ratio of exactly $1-1/\lambda$
- The strategy is a type of *selfish mining* [ES14]: Malicious miners mine
- blocks in private attempting to "kill" honest parties' blocks when they become available

26The Bitcoin Backbone: Analysis and Applications

Chain Quality Property (2)

- \blacksquare If *Ideal* chain quality: A set of parties with hashing power α may control up to α L blocks in a blockchain of length L
- Our chain quality bound is much more pessimistic (as the adv. can control almost all the blocks)
- Selfish mining implies that this is tight... Bitcoin is not incentivecompatible

Applications of the Bitcoin Backbone Protocol

Applications of the Backbone: Byz. Agreement [PSL80, LSP82]

- $\mathcal{L}_{\mathcal{A}}$ ■ Byzantine agreement (BA): *n* parties start with an initial value v_i
	- •Agreement: All honest parties output the same value
	- • Validity: If all honest parties start with the same input (say, v), thenthey output this value
- и BA in the anonymous synchronous setting
	- "Anonymous model without port awareness" [Okun05] •
	- •Deterministic BA not possible
	- *POW-based* protocols (cf. [AJK05, KMS14]) •

Nakamoto's BA Protocol

- $\textcolor{red}{\bullet}$ The *n* parties start building a blockchain inserting their input
- П If a party receives a longer blockchain switches to that one and switches its input
- When the blockchain is long enough the party outputs the value that it contains
- **Intuition:** Agreement would follow from the fact that honest parties will eventually agree on a single chain (for $(1/2)$ -bounded adv.)
- \blacksquare **Issue:** If adv. finds a solution first, then honest parties will extend adv.'s solution and switch to adv.'s input

Our First BA Protocol

- $\textcolor{red}{\bullet}$ The *n* parties start building a blockchain inserting their inputs
- \blacksquare If a party receives a longer blockchain switches to that one but keeps the same input
- Once the blockchain is long enough the parties prune the last k blocks and output the *majority value* in the prefix
- Protocol tolerates (1/3)-bounded adversaries

Summary of Results (1)

Applications of the Backbone (2)

- **Robust transaction ledgers: n** unauthenticated parties accept transactions and build a *ledger* so that the following properties are satisfied:
	- (i) Persistence: If a transaction is "deep" enough in the ledger for one honest party, then it will be reported by all honest parties at the same **location**
	- (ii) Liveness: All honestly generated transactions eventually get deep enough in the ledger of an honest party
- П We show how to instantiate the public transaction ledger for Bitcoin, by defining the sets of transactions and valid ledgers (see paper)

Applications of the Backbone (3)

Our second BA protocol

- The *n* parties build a ledger but now *generate transactions based on POWs that contain their inputs* — input itself must satisfy POW pred.
- • Once the blockchain is long enough the parties prune the last k blocks and output the majority of the values drawn from the unique transactions
- •Protocol tolerates (1/2)-bounded adversaries
- •POWs are now used for two different tasks

How do we prevent the adversary from shifting its hashing power from one to the other?

2-for-1 POWs

Algorithm 6 POW-based protocol fragment of $\Pi_b, b \in \{0,1\}$ parameterized by q, D and hash functions $H_b(\cdot), G(\cdot), b \in \{0,1\}$. The value w_b is determined from the protocol's context.

Algorithm 7 The *double proof of work* function, parameterized by q , D and hash functions $H(\cdot), G(\cdot)$ that substitutes steps 2-11 of two POW-based protocols.

```
1: function double-pow(w_0, w_1)B_0, B_1 \leftarrow \varepsilon2:ctr \leftarrow 13:while (ctr \leq q) do
 4:h \leftarrow H(ctr, G(w_0), G(w_1))5:if (h < D) then
 6:B_0 \leftarrow \langle \mathit{ctr}, w_0, G(w_1) \rangle7:break
 8:
              end if
 9:if ([h]^R < D) then
10:B_1 \leftarrow \langle \mathit{ctr}, w_1, G(w_0) \rangle11:break
12:end if
13:ctr \leftarrow ctr + 114:end while
15:return \langle B_0, B_1 \rangle16:17: end function
```
 $-$ - 100

35The Bitcoin Backbone: Analysis and Applications

Summary of Results (2)

YAHOO!

Conclusions

- \blacksquare ■ Formal treatment of core of Bitcoin's transaction ledger — the Bitcoin
"backbone" "backbone"
	- "Common prefix" and "chain quality" as foundations for BA and robust •transaction ledger protocols
- \blacksquare Deviations of concern
	- Network synchronization *vis-à-vis* POW rate: fast information propagation •is essential
	- Adv.'s contributions to blockchain can be strictly larger than β : transaction •liveness becomes fragile as $\beta \rightarrow 1/2$
- \blacksquare Fixed no. of participants
	- Difficulty D ("target T") may be calibrated according to the no. of active •players

References

- \blacksquare J. Garay, A. Kiayias and N. Leonardos, "The Bitcoin Backbone Protocol: Analysis and Applications." Cryptology ePrint Archive: Report 2014/765http://eprint.iacr.org/2014/765
- \blacksquare T. Holenstein, "Is There a Theory Behind Bitcoin?" ITS Science Colloquium 06.11.2014

http://www.eth-its.ethz.ch/activities/its-science-colloquium/Holenstein.html

YAHOO! LABS
Science-Driven Innovation

