// Exemplo de arquivo de descricao de ANIMAÇÃO para POV-ray // Last edited on 2009-09-24 15:40:22 by stolfi #macro quadro(tt) // Gera o quadro do filme (cena, luzes e câmera) // para o instante {tt} -- um número real entre 0 e 1. // ====================================================================== // CÂMERA camera { location < 10.00, 6.00, -2.00 > // Posição do observador. right -1.00*x // Largura RELATIVA da imagem. up 0.75*y // Altura RELATIVA da imagem. sky z // Qual direção é "para cima"? look_at < 0.00, 0.00, 0.00 > // Para onde a câmera está apontando. } // Nota: os parâmetros "right" e "up" devem ter a mesma proporção // que os parâmetros ${WIDTH} e ${HEIGHT} no Makefile. // ====================================================================== // FONTES DE LUZ light_source { 10 * < +50.0, +30.0, +50.0 > // Posição da lâmpada. color rgb 1.2 * < 1.00, 1.00, 1.00 > // Intensidade e corda luz. } light_source { 10 * < +50.0, -10.0, +10.0 > // Posição da lâmpada. color rgb 0.8 * < 1.00, 1.00, 1.00 > // Intensidade e corda luz. } // ====================================================================== // DESCRIÇÃO DA CENA background{ color rgb < 0.75, 0.80, 0.85 > } #declare raio = 2.000; // Um parãmetro que varia {+1, 00, -1, 00, +1}: #declare ctt = cos(2*pi*tt); // Um parâmetro que varia {00, +1, 00, -1, 00}: #declare stt = sin(2*pi*tt); #declare tinta_A = texture { pigment { color rgb < 0.55 + 0.45*ctt, 0.80, 0.55 - 0.5*ctt > } finish { diffuse 0.5 specular 0.5 roughness 0.005 ambient 0.1 } } #declare tinta_B = texture { pigment { color rgb < 1.00, 0.80, 0.10 > } finish { diffuse 0.5 specular 0.5 roughness 0.005 ambient 0.1 } } #macro pe () cylinder { < 0.0, 0.0, 0.0 >, < 0.00, 0.8, 0.0 >, 0.2 texture { tinta_A } } #end #macro canela (gama) union{ cylinder { < 0.0, 0.0, 0.1 >, < 0.00, 0.0, -1.0 >, 0.2 texture { tinta_A } } object {pe() rotate gama*x translate -0.9*z} } #end #macro perna (beta, gama) union{ cylinder { < 0.0, 0.0, 0.2 >, < 0.00, 0.0, -1.50 >, 0.2 texture { tinta_B } } object {canela (gama) rotate beta*x translate -1.5*z} } #end #macro bicho (alfa, beta, gama) union{ sphere { < 1, 1, 1.60 >, 0.90 texture { tinta_A } } box{ <0.00, 0.00, 0.00 >, <2.00, 2.00, 2.00 > texture { tinta_B } } object {perna (beta, gama) rotate alfa*x translate 1.5*y translate 1.5*x translate 0.2*z} } #end // Aqui está a cena, finalmente: #declare t0 = 0.0; #declare t1 = 0.25; #declare t2 = 0.50; #declare t3 = 0.750; #declare t4 = 1.0; #declare alfa0 = 45.0; #declare alfa1 = 60.0; #declare alfa2 = 0.0; #declare alfa3 = 30.0; #declare alfa4 = 45.0; #declare beta0 = -90.0; #declare beta1 = -120.0; #declare beta2 = 0.0; #declare beta3 = -60.0; #declare beta4 = -90.0; #declare gama0 = 45.0; #declare gama1 = 60.0; #declare gama2 = 0.0; #declare gama3 = 30.0; #declare gama4 = 45.0; #macro interpola (ta, va, tb, vb, tt) #local s= (tt-ta)/(tb-ta); ((1-s)*va+s*vb) #end #if ((clock >= t0)&(clock <= t1)) #declare alfa = interpola (t0, alfa0, t1, alfa1,clock); #declare beta = interpola (t0, beta0, t1, beta1,clock); #declare gama = interpola (t0, gama0, t1, gama1,clock); object { bicho (alfa, beta, gama) translate 1*z} #end #if ((clock >= t1)&(clock <= t2)) #declare alfa = interpola (t1, alfa1, t2, alfa2,clock); #declare beta = interpola (t1, beta1, t2, beta2,clock); #declare gama = interpola (t1, gama1, t2, gama2,clock); object { bicho (alfa, beta, gama) translate 1*z} #end #if ((clock >= t2)&(clock <= t3)) #declare alfa = interpola (t2, alfa2, t3, alfa3,clock); #declare beta = interpola (t2, beta2, t3, beta3,clock); #declare gama = interpola (t2, gama2, t3, gama3,clock); object { bicho (alfa, beta, gama) translate 1*z} #end #if ((clock >= t3)&(clock <= t4)) #declare alfa = interpola (t3, alfa3, t4, alfa4,clock); #declare beta = interpola (t3, beta3, t4, beta4,clock); #declare gama = interpola (t3, gama3, t4, gama4,clock); object { bicho (alfa, beta, gama) translate 1*z} #end union { //object { bola } //object { corpo} // object { bicho (alfa, beta, gama) translate 1*z} //object { bico translate <0,0,sin(2*pi*tt)>} //object { asa1 rotate <37*sin(2*pi*tt),0,0>} //object { asa2 rotate <-37*sin(2*pi*tt),0,0>} } #end // gera o quadro correspondente ao instante dado {clock}: quadro(clock)