SPLINES ON THE SPHERE

Splines on the Sphere
(A View from the Other Hemisphere)

JORGE STOLFI

Institute of Computing
State University of Campinas - UNICAMP

Campinas, SP, Brazil
stolfi@ic.unicamp.br

Joint work with
ANAMARIA GOMIDE







Modeling with Uniform Lon-Lat Grids




Modeling with Spherical Harmonics
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Spherical Splines

Geodesic triangulation




Finite Element Bases for Spherical Splines




Cartesian Approach to Spherical Functions

spherical

F(z,y,2) model

f=F|S?

straight
model




Spherical Polynomials

H? = Homogeneous trivariate polynomials of degree d.

P? = Ceneral trivariate polynomials of degree at most d
=HoH o - -oH

On the sphere, 1 = z?+ 3%+ 22
Therefore ~ P9S? = HIS?pHI S




Spherical Splines

HY[T]|S? = Homogeneous C, spherical splines on T with degree d.

PYUTI]|S?* = General C, spherical splines on 7' with degree at most d
= H[T]|S* @ H; '(T]|S?

|Gomide and Stolfi 199§]

For the circle:

PATIIS' > HIT)|S? @ H—![T)|S*.
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ANS Finite Element Bases

Two bases for each space, differ on vertex elements:

e Original construction (O): g + 3 “oranges”.

e New construction (N): g “boats” and 3 “oranges”.
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Original ANS basis

‘1\ N

Original ANS basis for H{
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Modified ANS basis
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Least Squares Approximation

Least squares approximation problem
Solve Ac = b where

Aij = (i | ;)
bi = (¢l [)
¢1,.. ¢, = a function basis
f = function to be approximated
( | ) = afunctional scalar product
c1,.. ¢, = coeflicients of approximation
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Matrices from Finite Elements

rse matrices:

15

Finite-element bases give spa




Orthogonal Bases

Orthogonal bases are much better:
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Semi-Orthogonalization

.. but orthogonalization of a spline basis (e.g. Gram-Schmidt) destroys locality

Semi-orthogonalization:
Make the basis as orthogonal as possible

without increasing the element support
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Semi-Orthogonalization (2)
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Definitions and Notation

() = the domain.
T = the mesh: a partition of €2 into tiles t1,..1,.
supp(f) = support of f: set of tiles of T" where f is not zero.

® = a basis: list of L.I. functions ¢4, .. ¢,, on (2

&y = elements of ® which have support X.

A basis ® is semi-orthogonal iff
(¢i | ¢;) = 0 whenever supp(¢;) C supp(e;).
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Support Structure of a Spline Basis

The map X — ®x defines the support structure of ®
Viewed as a graph G(P)

e Nodes VG={X: X CT}.
o FdgesG: X - Y iff X CY and | X|+1=1Y]

e Vertex X is decorated with the set ®y.
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Semi-Orthogonalization Algorithm

e for each X in VG, in increasing containment order

elet 'y | J{Py: Y C X}
e for each element ¢ of ®x,
e make ¢ orthogonal to I'x

e make the elements of ®x orthogonal among themselves.
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Cost of Algorithm

Typically | X|, |®x|, and |I'x| are O(1) for any X with non-empty ®x.
No step is executed more than m times.

Total time is O(m) (but with a respectable constant!).

Since V@ is processed bottom-up, 'y is semi-orthogonal.

If v; € T'x has |supp(v;)| = 1, we can assume that it is orthogonal to every other
element in ['x.

When making ®x = (4, .. ¢x) orthogonal, use the eigenvectors of the matrix Ay =
(vi [ 7).
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Example

Data used in test:

() = sphere
M = icosahedral triangulation of S?
® = Alefeld-Neamtu-Schumaker (ANS) basis, C;

Two spaces:

e ! - Homogeneous of degree 7 (dimension = 306)

o 1% @ H? - Non-homogeneous of degree 6 (dimension = 332)
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Original basis, semi-orthogonal
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Semi-orthogonal ANS basis for ‘H

)

NG
&

)

@)

o

N
N 4

24



Modified basis, semi-orthogonal

Semi-orthogonal modified ANS basis for H{ @ H;
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Comparison of bases

Non-zero elements and condition numbers

plain semi-ortho
space dim | basis | elems | cond | elems | cond
HI 306 O |21148| 10°|11316| 10?
HI 306 | N 18226 | 10°| 10662 | 102
HE+H?| 33210 35232 | 10'% 29708 | 108
HO+H° | 332| N 29440 | 10" | 26515 | 10°
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Static Linear PDE on the Sphere

Consider the differential equation

(Df)(p) = R(p)
for all p € ) where

e f is a function defined on €2, to be determined.
e D is a linear differential operator.

e R is a given function.
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Example - Helmholtz equation

Helmholtz equation, {2 = sphere
(& f —cf)(p) = R(p)

where c is a constant,
A is the spherical Laplace-Beltrami operator, and
R is a given scalar field.
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Aproximate Solution

Finite-element basis ® = (¢, .. ¢p_1)-

Goal: compute

9= Zcﬂ%

]

that approximates the solution f.

Galerkin’s criterion:
(Dg—R|¢;)=0 fori=0,..n—1

where

(u]v)= / u(p)o(p) dp.
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Matrix Form

Galerkin’s equations reduce to Hc = b where
Hij =(D¢; — R| ¢i)
b= (R|¢i)
For the Helmholtz equation
Hyj = (A& ¢;|¢i) —c(g;]| i)

By Green’s theorem, (A ¢; | ¢pi) = (V ¢; | Vi)
where V is the spherical gradient

(V f)(p) = (grad f)(p) — (p{grad [ f))p
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Non-Linear Problems

More generally
(Df)(p) = R(f(p),p)

for all p € €2, where R may depend non-linearly on f.

e solve by iteration.

e remove the linear part of R (Newton).
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Some Results

rms error (#iters)

RHS sol H’ HO D H®
sqrx 6.5z2 — 2 z?  [4.5%x107° 1.0 x 10712
cubx 12.5z% — 6z 3 (9.0 x 1071 1.0 x 10712
qrtx 20.5z* — 1222 ot 4.4 x107° 2.0 x 10712
sepx 56.5z" — 422° z7 19.0x 10713 6.9 x 107°

octx 72.5z8 — 562° 8 [8.9x107° 8.6 x 107°

cosx (1.5—x?)cosz — 2zsinz cosz | 8.1x 107° 2.1 x 107Y

sinx (1.5 —z?)sinz + 2z cosz sinz | 3.1 x 10710 1.3 x 1078

expx e”(z2+ 2z — 0.5) e’  |1.1x 107 1.4 x 107%

mcos (1.5 —«2)(3cosz + f)/4— 2zsinz | cosz [ 8.1 x 107> (25) (2.6 x 1079 (40)
mexp 0.5(e? + f)(z? + 2z — 0.5) e |1.1x107% (19)|1.4x10°% (35)
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Dynamic Problems

Time-dependent problem

(Df)p;t) = R(f(p,t), p; 1)
where

= point of €2
= time
= function to be determined

= a linear differential operator

O - w3
|

= agiven function.

33




Heat Diffusion on Rotating Sphere

Example - Heat diffusion on a rotating sphere

0

(5;1)(p:t) = K (A f)(p,t) +wV(p) - (Vf)(p,t) + L f(p,t) = Rlp, 1)

where

= heat diffusion coefficient
= angular speed
= velocity field forw = 1: V(z,y,2) = (—y, z,0)

= coeflicient of linear heat loss

oy I o BRI SN
|

= external heat input (may depend on f(p,t))

34




Petrov-Galerkin Approach

Assume a basis of space-time elements

U = (tho, .. hn-1)

where each 1y is a function of €2 x R.

We look for an approximation h to f

h(p) = cabe(p,t)

14

where the ¢, are coefficients to be determined.
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Petrov-Galerkin Approach (2)

We can use Petrov-Galerkin by
treating time as another space dimension:

(Dh— R|6;,)=0
for all k, where
© = (90, . HN—l)

is another basis of space-time elements (gauge functions).

We get the non-linear system
Mc=15b
where

My = (D | 0y) b= (R |0)
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Separating Time and Space

We can partially separate the variables by using
tensor-type bases for ® and ©. Let

¢ = (¢, .. Pp—1) = a basis over )
A = (¢o,..- dm-1) = a basis over R
' = (y0, .. Ym—1) = another basis over R,

Then use
wk — ¢’L )\r
Hk - sz’%«

wheret = 0,..n—1,r=0,..m—1,and k = +r.
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Separating the Integrals

Integrals can be separated:

(16 = (65100 |7)
(B0 0} = (A5 ] 6)(A ] )
(D01 8) = (616 (A7)
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Progressive Solution

Specifically, for the sphere we use

® = the ANS spherical splines C,
A = C, spline pulses spanning 2 time steps
[' = spline pulses of degree < i spanning one step

The time element A, is centered at epoch |[r/q| where ¢ = p+ 1.
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Progressive Solution (2)

The system’s matrix M then has the block structure

\

(N1N00 0 0 0

0 N, Ny -

where each block Ny, for k=0..1, is the a matrix of the scalar products of the differen-
tiated basis elements in epoch j — k against the gauge functions in epoch j.

Then at each step we solve

N()a() == d — N16L1

where ag is the coeflicients for the present epoch, and a; those of the previous epoch,
and d is the corresponding segment of b.
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An Example Result
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