SPLINES ON THE SPHERE

Splines on the Sphere (A View from the Other Hemisphere)

JORGE STOLFI

Institute of Computing
State University of Campinas - UNICAMP
Campinas, SP, Brazil
stolfi@ic.unicamp.br

Joint work with Anamaria Gomide

Spherical Functions and Spherical Splines A Spherical function: A Spherical spline:

Modeling with Uniform Lon-Lat Grids

Modeling with Spherical Harmonics

The Spectral Method

Spherical Splines Geodesic triangulation Spherical spline

Cartesian Approach to Spherical Functions

$$f = F|\mathbf{S}^2$$

Spherical Polynomials

 \mathcal{H}^d = Homogeneous trivariate polynomials of degree d.

 \mathcal{P}^d = General trivariate polynomials of degree at most d = $\mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \mathcal{H}^d$

On the sphere, $1 = x^2 + y^2 + z^2$.

Therefore $\mathcal{P}^d|\mathbf{S}^2 = \mathcal{H}^d|\mathbf{S}^2 \oplus \mathcal{H}^{d-1}|\mathbf{S}^2$.

Spherical Splines

 $\mathcal{H}_r^d[T]|\mathbf{S}^2$ = Homogeneous C_r spherical splines on T with degree d.

$$\mathcal{P}_r^d[T]|\mathbf{S}^2$$
 = General C_r spherical splines on T with degree at most d = $\mathcal{H}_r^d[T]|\mathbf{S}^2 \oplus \mathcal{H}_r^{d-1}[T]|\mathbf{S}^2$

[Gomide and Stolfi 1998]

For the circle:

$$\mathcal{P}_r^d[T]|\mathbf{S}^1 \supset \mathcal{H}_r^d[T]|\mathbf{S}^2 \oplus \mathcal{H}_r^{d-1}[T]|\mathbf{S}^2.$$

ANS Finite Element Bases

Two bases for each space, differ on vertex elements:

- Original construction (O): g + 3 "oranges".
- ullet New construction (N): g "boats" and 3 "oranges".

Original ANS basis

Original ANS basis for \mathcal{H}_1^7

Modified ANS basis

Least Squares Approximation

Least squares approximation problem Solve Ac = b where

$$A_{i,j} = \langle \phi_i | \phi_j \rangle$$
 $b_i = \langle \phi_i | f \rangle$
 $\phi_1, ... \phi_n = \text{a function basis}$
 $f = \text{function to be approximated}$
 $\langle | \rangle = \text{a functional scalar product}$
 $c_1, ... c_n = \text{coefficients of approximation}$

Matrices from Finite Elements

Finite-element bases give sparse matrices:

Semi-Orthogonalization

... but orthogonalization of a spline basis (e.g. Gram-Schmidt) destroys locality

Semi-orthogonalization:

Make the basis as orthogonal as possible without increasing the element support

Semi-Orthogonalization (2)

Definitions and Notation

 Ω = the domain.

 $T = \text{the } mesh: \text{ a partition of } \Omega \text{ into } tiles \ t_1, \dots t_n.$

supp(f) = support of f: set of tiles of T where f is not zero.

 $\Phi = a \ basis$: list of L.I. functions $\phi_1, ... \phi_m$ on Ω

 Φ_X = elements of Φ which have support X.

A basis Φ is *semi-orthogonal* iff $\langle \phi_i | \phi_j \rangle = 0$ whenever $\operatorname{supp}(\phi_i) \subseteq \operatorname{supp}(\phi_j)$.

Support Structure of a Spline Basis

The map $X \to \Phi_X$ defines the *support structure* of Φ Viewed as a graph $\mathcal{G}(\Phi)$

- Nodes $\mathcal{VG} = \{ X : X \subseteq T \}.$
- Edges \mathcal{EG} : $X \to Y$ iff $X \subseteq Y$ and |X| + 1 = |Y|.
- Vertex X is decorated with the set Φ_X .

The useful part of $\mathcal{G}(\Phi)$ is small -O(n)=O(m), not 2^m .

Semi-Orthogonalization Algorithm

- for each X in \mathcal{VG} , in increasing containment order
 - let $\Gamma_X \leftarrow \bigcup \{ \Phi_Y : Y \subset X \}$
 - for each element ϕ of Φ_X ,
 - make ϕ orthogonal to Γ_X
 - make the elements of Φ_X orthogonal among themselves.

Cost of Algorithm

Typically |X|, $|\Phi_X|$, and $|\Gamma_X|$ are O(1) for any X with non-empty Φ_X .

No step is executed more than m times.

Total time is O(m) (but with a respectable constant!).

Since \mathcal{VG} is processed bottom-up, Γ_X is semi-orthogonal.

If $\gamma_i \in \Gamma_X$ has $|\text{supp}(\gamma_i)| = 1$, we can assume that it is orthogonal to every other element in Γ_X .

When making $\Phi_X = (\gamma_1, ... \phi_k)$ orthogonal, use the eigenvectors of the matrix $A_X = \langle \gamma_i | \gamma_j \rangle$.

Example

Data used in test:

 $\Omega = \text{sphere}$

 $M = \text{icosahedral triangulation of } \mathbf{S}^2$

 $\Phi = \text{Alefeld-Neamtu-Schumaker (ANS) basis, } C_1$

Two spaces:

- \mathcal{H}_1^7 Homogeneous of degree 7 (dimension = 306)
- $\mathcal{H}_1^6 \oplus \mathcal{H}_1^5$ Non-homogeneous of degree 6 (dimension = 332)

Original basis, semi-orthogonal

Semi-orthogonal ANS basis for \mathcal{H}_1^7

Modified basis, semi-orthogonal

Semi-orthogonal modified ANS basis for $\mathcal{H}_1^6 \oplus \mathcal{H}_1^5$

Comparison of bases

Non-zero elements and condition numbers

			plain		semi-ortho	
space	dim	basis	elems	cond	elems	cond
\mathcal{H}_1^7	306	О	21148	10^{5}	11316	10^{2}
\mathcal{H}_1^7	306	N	18226	10^{5}	10662	10^{2}
$\overline{\mathcal{H}_1^6+\mathcal{H}_1^5}$	332	О	35232	10^{13}	29708	10^{8}
$\mathcal{H}_1^6 + \mathcal{H}_1^5$	332	N	29440	10^{13}	26515	10^{8}

Static Linear PDE on the Sphere

Consider the differential equation

$$(\mathcal{D}f)(p) = R(p)$$

for all $p \in \Omega$ where

- f is a function defined on Ω , to be determined.
- ullet $\mathcal D$ is a linear differential operator.
- \bullet R is a given function.

Helmholtz equation, $\Omega = \text{sphere}$

$$(\Delta f - cf)(p) = R(p)$$

where c is a constant, Δ is the spherical Laplace-Beltrami operator, and R is a given scalar field.

Aproximate Solution

Finite-element basis $\Phi = (\phi_0, ... \phi_{n-1})$.

Goal: compute

$$g = \sum_i c_i \phi_i$$

that approximates the solution f.

Galerkin's criterion:

$$\langle \mathcal{D}g - R \mid \phi_i \rangle = 0$$
 for $i = 0, ... n - 1$

where

$$\langle u \mid v \rangle = \int_{\Omega} u(p)v(p) dp.$$

Matrix Form

Galerkin's equations reduce to Hc = b where

$$H_{ij} = \langle \mathcal{D}\phi_j - R \mid \phi_i \rangle$$

$$b_i = \langle R \mid \phi_i \rangle$$

For the Helmholtz equation

$$H_{ij} = \langle \Delta \phi_j \mid \phi_i \rangle - c \langle \phi_j \mid \phi_i \rangle$$

By Green's theorem, $\langle \Delta \phi_j \mid \phi i \rangle = \langle \nabla \phi_j \mid \nabla \phi i \rangle$ where ∇ is the spherical gradient

$$(\nabla f)(p) = (\operatorname{grad} f)(p) - (p \langle \operatorname{grad} | f \rangle)p$$

Non-Linear Problems

More generally

$$(\mathcal{D}f)(p) = R(f(p), p)$$

for all $p \in \Omega$, where R may depend non-linearly on f.

- solve by iteration.
- remove the linear part of R (Newton).

Some Results

			rms error (#iters)		
RHS		sol	\mathcal{H}^7	$\mathcal{H}^6\oplus\mathcal{H}^5$	
sqrx	$6.5x^2 - 2$	x^2	4.5×10^{-5}	1.0×10^{-12}	
cubx	$12.5x^3 - 6x$	x^3	9.0×10^{-13}	1.0×10^{-12}	
qrtx	$20.5x^4 - 12x^2$	x^4	4.4×10^{-5}	2.0×10^{-12}	
sepx	$56.5x^7 - 42x^5$	x^7	9.0×10^{-13}	6.9×10^{-5}	
octx	$72.5x^8 - 56x^6$	x^8	8.9×10^{-5}	8.6×10^{-5}	
cosx	$(1.5 - x^2)\cos x - 2x\sin x$	$\cos x$	8.1×10^{-5}	2.1×10^{-9}	
sinx	$(1.5 - x^2)\sin x + 2x\cos x$	$\sin x$	3.1×10^{-10}	1.3×10^{-8}	
expx	$e^x(x^2 + 2x - 0.5)$	e^x	1.1×10^{-4}	1.4×10^{-8}	
mcos	$(1.5 - x^2)(3\cos x + f)/4 - 2x\sin x$	$\cos x$	8.1×10^{-5} (25)	2.6×10^{-9} (40)	
mexp	$0.5(e^x + f)(x^2 + 2x - 0.5)$	e^x	1.1×10^{-4} (19)	1.4×10^{-8} (35)	

Dynamic Problems

Time-dependent problem

$$(\mathcal{D}f)(p,t) = R(f(p,t),p,t)$$

where

 $p = \text{point of } \Omega$

t = time

f = function to be determined

 $\mathcal{D} = a \text{ linear differential operator}$

R = agiven function.

Heat Diffusion on Rotating Sphere

Example - Heat diffusion on a rotating sphere

$$(\frac{\partial}{\partial t}f)(p,t) - K(\Delta f)(p,t) + \omega V(p) \cdot (\nabla f)(p,t) + L f(p,t) = R(p,t)$$
 where

K = heat diffusion coefficient

 $\omega = \text{angular speed}$

 $V = \text{velocity field for } \omega = 1$: V(x, y, z) = (-y, x, 0)

L =coefficient of linear heat loss

R = external heat input (may depend on f(p, t))

Petrov-Galerkin Approach

Assume a basis of space-time elements

$$\Psi = (\psi_0, \dots \psi_{N-1})$$

where each ψ_{ℓ} is a function of $\Omega \times \mathbf{R}$.

We look for an approximation h to f

$$h(p) = \sum_\ell c_\ell \psi_\ell(p,t)$$

where the c_{ℓ} are coefficients to be determined.

Petrov-Galerkin Approach (2)

We can use Petrov-Galerkin by treating time as another space dimension:

$$\langle \mathcal{D}h - R \mid \theta_k \rangle = 0$$

for all k, where

$$\Theta = (\theta_0, ... \theta_{N-1})$$

is another basis of space-time elements (gauge functions).

We get the non-linear system

$$Mc = b$$

where

$$M_{k\ell} = \langle \mathcal{D}\psi_{\ell} \mid \theta_k \rangle \qquad b_k = \langle R \mid \theta_k \rangle$$

Separating Time and Space

We can partially separate the variables by using tensor-type bases for Φ and Θ . Let

$$\Phi = (\phi_0, ... \phi_{n-1}) = a \text{ basis over } \Omega$$

$$\Lambda = (\phi_0, ... \phi_{m-1}) = a \text{ basis over } \mathbf{R}$$

$$\Gamma = (\gamma_0, ... \gamma_{m-1}) = \text{another basis over } \mathbf{R}$$

Then use

$$\psi_k = \phi_i \lambda_r$$

$$\theta_k = \phi_i \gamma_r$$

where i = 0, ..., n - 1, r = 0, ..., m - 1, and k = in + r.

Separating the Integrals

Integrals can be separated:

$$\langle \psi_{\ell} | \theta_{k} \rangle = \langle \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$

$$\langle \Delta \psi_{\ell} | \theta_{k} \rangle = \langle \Delta \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$

$$\langle V \cdot \nabla \psi_{\ell} | \theta_{k} \rangle = \langle V \cdot \nabla \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$

$$\langle \frac{\partial}{\partial t} \psi_{\ell} | \theta_{k} \rangle = \langle \phi_{j} | \phi_{i} \rangle \langle \frac{\partial}{\partial t} \lambda_{s} | \gamma_{r} \rangle$$

Progressive Solution

Specifically, for the sphere we use

 $\Phi = \text{the ANS spherical splines } C_{\mu}$

 $\Lambda = C_{\mu}$ spline pulses spanning 2 time steps

 Γ = spline pulses of degree $\leq \mu$ spanning one step

The time element λ_r is centered at epoch $\lfloor r/q \rfloor$ where $q = \mu + 1$.

Progressive Solution (2)

The system's matrix M then has the block structure

$$\begin{pmatrix}
N_1 & N_0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & 0 & N_1 & N_0 & 0 & 0 & \cdots \\
\vdots & 0 & 0 & N_1 & N_0 & 0 & \cdots \\
\vdots & 0 & \vdots & 0 & N_1 & N_0 & \cdots \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

where each block N_k , for k=0..1, is the a matrix of the scalar products of the differentiated basis elements in epoch j-k against the gauge functions in epoch j.

Then at each step we solve

$$N_0 a_0 == d - N_1 a_1$$

where a_0 is the coefficients for the present epoch, and a_1 those of the previous epoch, and d is the corresponding segment of b.

An Example Result

