SPLINES ON THE SPHERE ### Splines on the Sphere (A View from the Other Hemisphere) JORGE STOLFI Institute of Computing State University of Campinas - UNICAMP Campinas, SP, Brazil stolfi@ic.unicamp.br Joint work with Anamaria Gomide ## Spherical Functions and Spherical Splines A Spherical function: A Spherical spline: # Modeling with Uniform Lon-Lat Grids # Modeling with Spherical Harmonics ### The Spectral Method ## Spherical Splines Geodesic triangulation Spherical spline ### Cartesian Approach to Spherical Functions $$f = F|\mathbf{S}^2$$ ### Spherical Polynomials \mathcal{H}^d = Homogeneous trivariate polynomials of degree d. \mathcal{P}^d = General trivariate polynomials of degree at most d = $\mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \mathcal{H}^d$ On the sphere, $1 = x^2 + y^2 + z^2$. Therefore $\mathcal{P}^d|\mathbf{S}^2 = \mathcal{H}^d|\mathbf{S}^2 \oplus \mathcal{H}^{d-1}|\mathbf{S}^2$. ### Spherical Splines $\mathcal{H}_r^d[T]|\mathbf{S}^2$ = Homogeneous C_r spherical splines on T with degree d. $$\mathcal{P}_r^d[T]|\mathbf{S}^2$$ = General C_r spherical splines on T with degree at most d = $\mathcal{H}_r^d[T]|\mathbf{S}^2 \oplus \mathcal{H}_r^{d-1}[T]|\mathbf{S}^2$ [Gomide and Stolfi 1998] For the circle: $$\mathcal{P}_r^d[T]|\mathbf{S}^1 \supset \mathcal{H}_r^d[T]|\mathbf{S}^2 \oplus \mathcal{H}_r^{d-1}[T]|\mathbf{S}^2.$$ ### ANS Finite Element Bases Two bases for each space, differ on vertex elements: - Original construction (O): g + 3 "oranges". - ullet New construction (N): g "boats" and 3 "oranges". ### Original ANS basis ### Original ANS basis for \mathcal{H}_1^7 ### Modified ANS basis ### Least Squares Approximation Least squares approximation problem Solve Ac = b where $$A_{i,j} = \langle \phi_i | \phi_j \rangle$$ $b_i = \langle \phi_i | f \rangle$ $\phi_1, ... \phi_n = \text{a function basis}$ $f = \text{function to be approximated}$ $\langle | \rangle = \text{a functional scalar product}$ $c_1, ... c_n = \text{coefficients of approximation}$ ### Matrices from Finite Elements ### Finite-element bases give sparse matrices: ### Semi-Orthogonalization ... but orthogonalization of a spline basis (e.g. Gram-Schmidt) destroys locality ### Semi-orthogonalization: Make the basis as orthogonal as possible without increasing the element support ### Semi-Orthogonalization (2) ### **Definitions and Notation** Ω = the domain. $T = \text{the } mesh: \text{ a partition of } \Omega \text{ into } tiles \ t_1, \dots t_n.$ supp(f) = support of f: set of tiles of T where f is not zero. $\Phi = a \ basis$: list of L.I. functions $\phi_1, ... \phi_m$ on Ω Φ_X = elements of Φ which have support X. A basis Φ is *semi-orthogonal* iff $\langle \phi_i | \phi_j \rangle = 0$ whenever $\operatorname{supp}(\phi_i) \subseteq \operatorname{supp}(\phi_j)$. ### Support Structure of a Spline Basis The map $X \to \Phi_X$ defines the *support structure* of Φ Viewed as a graph $\mathcal{G}(\Phi)$ - Nodes $\mathcal{VG} = \{ X : X \subseteq T \}.$ - Edges \mathcal{EG} : $X \to Y$ iff $X \subseteq Y$ and |X| + 1 = |Y|. - Vertex X is decorated with the set Φ_X . The useful part of $\mathcal{G}(\Phi)$ is small -O(n)=O(m), not 2^m . ### Semi-Orthogonalization Algorithm - for each X in \mathcal{VG} , in increasing containment order - let $\Gamma_X \leftarrow \bigcup \{ \Phi_Y : Y \subset X \}$ - for each element ϕ of Φ_X , - make ϕ orthogonal to Γ_X - make the elements of Φ_X orthogonal among themselves. ### Cost of Algorithm Typically |X|, $|\Phi_X|$, and $|\Gamma_X|$ are O(1) for any X with non-empty Φ_X . No step is executed more than m times. Total time is O(m) (but with a respectable constant!). Since \mathcal{VG} is processed bottom-up, Γ_X is semi-orthogonal. If $\gamma_i \in \Gamma_X$ has $|\text{supp}(\gamma_i)| = 1$, we can assume that it is orthogonal to every other element in Γ_X . When making $\Phi_X = (\gamma_1, ... \phi_k)$ orthogonal, use the eigenvectors of the matrix $A_X = \langle \gamma_i | \gamma_j \rangle$. ### Example Data used in test: $\Omega = \text{sphere}$ $M = \text{icosahedral triangulation of } \mathbf{S}^2$ $\Phi = \text{Alefeld-Neamtu-Schumaker (ANS) basis, } C_1$ Two spaces: - \mathcal{H}_1^7 Homogeneous of degree 7 (dimension = 306) - $\mathcal{H}_1^6 \oplus \mathcal{H}_1^5$ Non-homogeneous of degree 6 (dimension = 332) ### Original basis, semi-orthogonal ### Semi-orthogonal ANS basis for \mathcal{H}_1^7 ### Modified basis, semi-orthogonal ### Semi-orthogonal modified ANS basis for $\mathcal{H}_1^6 \oplus \mathcal{H}_1^5$ ### Comparison of bases ### Non-zero elements and condition numbers | | | | plain | | semi-ortho | | |--|-----|-------|-------|-----------|------------|----------| | space | dim | basis | elems | cond | elems | cond | | \mathcal{H}_1^7 | 306 | О | 21148 | 10^{5} | 11316 | 10^{2} | | \mathcal{H}_1^7 | 306 | N | 18226 | 10^{5} | 10662 | 10^{2} | | $\overline{\mathcal{H}_1^6+\mathcal{H}_1^5}$ | 332 | О | 35232 | 10^{13} | 29708 | 10^{8} | | $\mathcal{H}_1^6 + \mathcal{H}_1^5$ | 332 | N | 29440 | 10^{13} | 26515 | 10^{8} | ### Static Linear PDE on the Sphere Consider the differential equation $$(\mathcal{D}f)(p) = R(p)$$ for all $p \in \Omega$ where - f is a function defined on Ω , to be determined. - ullet $\mathcal D$ is a linear differential operator. - \bullet R is a given function. Helmholtz equation, $\Omega = \text{sphere}$ $$(\Delta f - cf)(p) = R(p)$$ where c is a constant, Δ is the spherical Laplace-Beltrami operator, and R is a given scalar field. ### Aproximate Solution Finite-element basis $\Phi = (\phi_0, ... \phi_{n-1})$. Goal: compute $$g = \sum_i c_i \phi_i$$ that approximates the solution f. Galerkin's criterion: $$\langle \mathcal{D}g - R \mid \phi_i \rangle = 0$$ for $i = 0, ... n - 1$ where $$\langle u \mid v \rangle = \int_{\Omega} u(p)v(p) dp.$$ ### Matrix Form Galerkin's equations reduce to Hc = b where $$H_{ij} = \langle \mathcal{D}\phi_j - R \mid \phi_i \rangle$$ $$b_i = \langle R \mid \phi_i \rangle$$ For the Helmholtz equation $$H_{ij} = \langle \Delta \phi_j \mid \phi_i \rangle - c \langle \phi_j \mid \phi_i \rangle$$ By Green's theorem, $\langle \Delta \phi_j \mid \phi i \rangle = \langle \nabla \phi_j \mid \nabla \phi i \rangle$ where ∇ is the spherical gradient $$(\nabla f)(p) = (\operatorname{grad} f)(p) - (p \langle \operatorname{grad} | f \rangle)p$$ ### Non-Linear Problems More generally $$(\mathcal{D}f)(p) = R(f(p), p)$$ for all $p \in \Omega$, where R may depend non-linearly on f. - solve by iteration. - remove the linear part of R (Newton). ### Some Results | | | | rms error (#iters) | | | |------|---|----------|---------------------------|------------------------------------|--| | RHS | | sol | \mathcal{H}^7 | $\mathcal{H}^6\oplus\mathcal{H}^5$ | | | sqrx | $6.5x^2 - 2$ | x^2 | 4.5×10^{-5} | 1.0×10^{-12} | | | cubx | $12.5x^3 - 6x$ | x^3 | 9.0×10^{-13} | 1.0×10^{-12} | | | qrtx | $20.5x^4 - 12x^2$ | x^4 | 4.4×10^{-5} | 2.0×10^{-12} | | | sepx | $56.5x^7 - 42x^5$ | x^7 | 9.0×10^{-13} | 6.9×10^{-5} | | | octx | $72.5x^8 - 56x^6$ | x^8 | 8.9×10^{-5} | 8.6×10^{-5} | | | cosx | $(1.5 - x^2)\cos x - 2x\sin x$ | $\cos x$ | 8.1×10^{-5} | 2.1×10^{-9} | | | sinx | $(1.5 - x^2)\sin x + 2x\cos x$ | $\sin x$ | 3.1×10^{-10} | 1.3×10^{-8} | | | expx | $e^x(x^2 + 2x - 0.5)$ | e^x | 1.1×10^{-4} | 1.4×10^{-8} | | | mcos | $(1.5 - x^2)(3\cos x + f)/4 - 2x\sin x$ | $\cos x$ | 8.1×10^{-5} (25) | 2.6×10^{-9} (40) | | | mexp | $0.5(e^x + f)(x^2 + 2x - 0.5)$ | e^x | 1.1×10^{-4} (19) | 1.4×10^{-8} (35) | | ### Dynamic Problems Time-dependent problem $$(\mathcal{D}f)(p,t) = R(f(p,t),p,t)$$ where $p = \text{point of } \Omega$ t = time f = function to be determined $\mathcal{D} = a \text{ linear differential operator}$ R = agiven function. ### Heat Diffusion on Rotating Sphere ### Example - Heat diffusion on a rotating sphere $$(\frac{\partial}{\partial t}f)(p,t) - K(\Delta f)(p,t) + \omega V(p) \cdot (\nabla f)(p,t) + L f(p,t) = R(p,t)$$ where K = heat diffusion coefficient $\omega = \text{angular speed}$ $V = \text{velocity field for } \omega = 1$: V(x, y, z) = (-y, x, 0) L =coefficient of linear heat loss R = external heat input (may depend on f(p, t)) ### Petrov-Galerkin Approach Assume a basis of space-time elements $$\Psi = (\psi_0, \dots \psi_{N-1})$$ where each ψ_{ℓ} is a function of $\Omega \times \mathbf{R}$. We look for an approximation h to f $$h(p) = \sum_\ell c_\ell \psi_\ell(p,t)$$ where the c_{ℓ} are coefficients to be determined. ### Petrov-Galerkin Approach (2) We can use Petrov-Galerkin by treating time as another space dimension: $$\langle \mathcal{D}h - R \mid \theta_k \rangle = 0$$ for all k, where $$\Theta = (\theta_0, ... \theta_{N-1})$$ is another basis of space-time elements (gauge functions). We get the non-linear system $$Mc = b$$ where $$M_{k\ell} = \langle \mathcal{D}\psi_{\ell} \mid \theta_k \rangle \qquad b_k = \langle R \mid \theta_k \rangle$$ ### Separating Time and Space We can partially separate the variables by using tensor-type bases for Φ and Θ . Let $$\Phi = (\phi_0, ... \phi_{n-1}) = a \text{ basis over } \Omega$$ $$\Lambda = (\phi_0, ... \phi_{m-1}) = a \text{ basis over } \mathbf{R}$$ $$\Gamma = (\gamma_0, ... \gamma_{m-1}) = \text{another basis over } \mathbf{R}$$ Then use $$\psi_k = \phi_i \lambda_r$$ $$\theta_k = \phi_i \gamma_r$$ where i = 0, ..., n - 1, r = 0, ..., m - 1, and k = in + r. ### Separating the Integrals Integrals can be separated: $$\langle \psi_{\ell} | \theta_{k} \rangle = \langle \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$ $$\langle \Delta \psi_{\ell} | \theta_{k} \rangle = \langle \Delta \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$ $$\langle V \cdot \nabla \psi_{\ell} | \theta_{k} \rangle = \langle V \cdot \nabla \phi_{j} | \phi_{i} \rangle \langle \lambda_{s} | \gamma_{r} \rangle$$ $$\langle \frac{\partial}{\partial t} \psi_{\ell} | \theta_{k} \rangle = \langle \phi_{j} | \phi_{i} \rangle \langle \frac{\partial}{\partial t} \lambda_{s} | \gamma_{r} \rangle$$ ### Progressive Solution Specifically, for the sphere we use $\Phi = \text{the ANS spherical splines } C_{\mu}$ $\Lambda = C_{\mu}$ spline pulses spanning 2 time steps Γ = spline pulses of degree $\leq \mu$ spanning one step The time element λ_r is centered at epoch $\lfloor r/q \rfloor$ where $q = \mu + 1$. ### Progressive Solution (2) The system's matrix M then has the block structure $$\begin{pmatrix} N_1 & N_0 & 0 & 0 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & 0 & N_1 & N_0 & 0 & 0 & \cdots \\ \vdots & 0 & 0 & N_1 & N_0 & 0 & \cdots \\ \vdots & 0 & \vdots & 0 & N_1 & N_0 & \cdots \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$ where each block N_k , for k=0..1, is the a matrix of the scalar products of the differentiated basis elements in epoch j-k against the gauge functions in epoch j. Then at each step we solve $$N_0 a_0 == d - N_1 a_1$$ where a_0 is the coefficients for the present epoch, and a_1 those of the previous epoch, and d is the corresponding segment of b. ### An Example Result