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?[Estou fazendo algumas mudanças:

• Nas análises e exemplos pretendo considerar só um tipo de Φ, a inte-

gral de uma gaussiana com média VT e desvio σ. Isso automaticamente

exclui os platôs, tanto em 1 quanto em 0, mas permite regimes quase-

estacionários ou quase-periodicos que duram séculos. Ou seja, matem-

aticamente parece que faz uma grande diferença, mas na prática não faz.

Vamos ver se simplifica ou complica a discussão.

• Considero inicialmente que cada neurônio tem o mesmo número K de

entradas (com K grande mas independente de N), vindas de neurônios

aleatórios com pesos wij aleatórios. Isso significa que o peso médio de

entrada de cada neurônio não é a média geral W , mas um valor wi que

tem uma distribuição gaussiana estreita em torno de W .

• Por conta disso, a distribuição P [t] não é um pente de Dirac, mas sim

um pico de Dirac em U0 = VR e uma série de picos gaussianos estreitos

em U1, U2, etc. Isso (pelo que entendo) torna a análise mais semelhante

ao tratamento da literatura com a equação de Fokker-Planck.

• Acrescentei uma seção sobre a equação de Fokker-Planck, como a en-

tendo. (Mas não sei se entendi direito.)

• Só depois disso que, na análise mean-field, considero o caso K = N −

1 onde essas gaussianas viram diracs. Creio que podemos argumentar

que elas podem ser tratadas como diracs mesmo quando K = 104. Um

obstáculo a fazer essa aproximação é que as gaussianas engordam (acho)

à medida que a idade aumenta. Mas creio que tendem a um limite finito

por conta do µ. Outro problema é que o espaço entre elas diminui com a

idade, e eventalmente podem se juntar numa bolota só. Mas, em regimes

interessantes, a amplitude também diminui com a idade, de modo que o

problema pode não ser grave.

• Acrescentei uma seção que compara o modelo GLS com o de noisy inputs.

São semelhantes mas não totalmente equivalentes.
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• Na seção SOC introduzi dois parâmetros para cada neurônio, γi[t] e δi[t],

que modulam as sinapses de entrada e de sáıda, respectivamente. Descon-

fio que qualquer um deles basta para obter SOC (se é que dá para obter).

Mas a modulação das sinapses de sáıda parece mais natural do que as

de entrada, devido ao fenômeno de depleção de veśıculas. Talvez os

dois tenham justificativa biológica, não sei. Aliás note que, na dinâmica

de sinapses, todas as sinapses DE SAÍDA são enfraquacidas ao mesmo

tempo quando um neurônio dispara. Portanto, δi parece ser quase uma

otimização do modelo de sinapses dinâmicas, enquanto que γi é um con-

ceito bem diferente.

• Mudei a notação um tanto: Wij/N (ou Wij/K) virou wij. Com isso, some

of fator 1/N na fórmula do neurônio individual, e aparece (brevemente)

um fator K no meio da análise do mean-field. Mas,como o valor médio

dos wij não-nulos é W/K, o parâmetro W continua com mesmo significado

e notação, e a maioria das fórmulas onde ele aparece não mudam.

]
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We report analytic and computational investigations of the behavior of neuronal

networks with a general leaky stochastic neuron model, where the neuron probability

of firing is given by a function Φ(V ) of the neuron membrane potential V , rather

than a sharp firing threshold. We find that the network can operate in various

dynamic regimes (phases) depending on the parameters of the model, including the

shape of the function Φ(V ). ?[Check:] In particular, for certain critical parameters

we find a continuous phase transition to an absorbing stationary regime, in the

directed percolation universality class. In this regime we observe neuronal avalanches

whose distributions of size and duration are given by power laws, as reported in

real neuronal networks. We also propose the use of dynamical neuronal gains (a

form of neuronal short-term plasticity), instead of dynamical synapse strengths, as a

more tractable mechanism to produce self-organized criticality (SOC) and neuronal

avalanches.
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I. INTRODUCTION

The integrate-and-fire (IF) neuron model was introduced the early 20th century [1] and

has been extensively used in the simulation of neuronal networks [2–7]. Basically, in IF

models, the membrane potential V (t) integrates synaptic or external currents up to a firing

threshold value VT. Then, a spike is generated and the membrane voltage drops to a reset

potential VR. The leaky integrate-and-fire (LIF) model extends the IF models with a leakage

current, that causes the potential V (t) to decay exponentially towards a baseline potential

VB in the absence of input signals [2, 4]. While not very accurate at the single cell level,

these models can provide valuable insights into the behavior of real neuronal networks.

Indeed, simulations have reproduced qualitatively some phenomena observed in real neuronal

systems, such as firing avalanches [8–11] and multiple dynamical regimes [13, 14].

In the basic LIF models, the response of each neuron is deterministic. It has been claimed

that a stochastic model may be more adequate for simulation purposes, since the response

of a neuron in a real network is affected by random changes in the cell’s electrochemical

state and influence from the firing activity of nearby neurons [15]. Several authors pro-

posed to model those random influences by adding noise current inputs to LIF models, both

continuous-time [2, 3, 13, 14] and discrete-time [16–19], resulting in the leaky stochastic

integrate-and-fire (LSIF) model. Galves and Locherbach [20–22] and Larremore et al. [23],

in contrast, proposed to incorporate stochasticity in LIF models by assuming that the firing

of a neuron is a random event, whose probability of occurrence in any time step is a firing

function Φ(V ) of membrane potential V . We will refer to this approach as the generic leaky

stochastic (GLS) models. These GLS neurons are interesting because they are simpler to

implement and analyze than the LSIF neurons.

Another known feature of biological neural networks is plasticity : changes in the elec-

trochemical parameters and other properties of the brain over time scales longer than the

firing of a neuron. Long term synaptic changes are widely utilized to model memory for-

mation and learning [5, 24]. Short term changes include temporary reduction of synaptic

strength after firing, due to neurotransmitter vesicles depletion or other phenomena [25].

These changes have been observed to drive the parameters of the network towards critical

values, which are believed to maximize its computational efficiency [8, 26–29]; a phenomenon

called self-organized criticality (SOC). Short-term plasticity has typically been incorporated
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in models by assuming that the strength of each synapse is lowered after each firing, and

then gradually recovers towards a quiescent value [9, 10, 30, 31].

In this article, we first study the dynamics of networks of GLS neurons, by a simple

mean-field approximation and by computational simulations of networks with thousands of

elements. In the mean-field analysis, we replace the stochastic evolution of the network by

a deterministic evolution of a probability distribution according to a variant of the Fokker-

Planck equation. ?[Check:] We find both continuous and discontinuous absorbing state

phase transitions in our networks depending on characteristics of the firing function Φ(V ).

We find that, for certain firing functions and critical parameter settings, the forced firing

of a single neuron causes finite avalanches of firing events, that are statistically similar to

those observed in the vertebrate brains [8, 28].

Second, we present a new mechanism for short-term plasticity that is based on dynamical

changes of a gain parameter associated to each neuron, instead of changing the individual

synaptic strengths. This model has the computational advantage of needing only N state

variables and equations instead of N2 required by the synapse dynamics approach. Yet, our

simulations show that this model too displays self-organization to criticality.

II. NEURON MODEL

The discrete-time neuron that we use in the rest of this paper can be viewed as a simple

Euler approximation of the continuous-time GLS model described in the introduction.

The network generically consists of N neurons with membrane potential Vi (i = 1, . . . , N).

Each synapse transmits the signals from some presynaptic neuron j to some postsynaptic

neuron i, and has a numerical attribute wij, the synaptic strength, which is the increment

on the potential of neuron i when neuron j fires. When wij = 0, effectively there are no

synapses from neuron j to neuron i.

We also assume that the states of all neurons are observed only at equally spaced sampling

times, and change synchronously in the intervals between them. The time step ∆ between

sampling times is assumed to be small enough to exclude the possibility of a neuron firing

more than once during each step. Thus, the continuously-varying membrane potential of a

neuron i is modeled by a sequence of real values Vi[t], indexed by the discrete time t, an

integer that represents the sampling time t∆.
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In this model, if some neuron j fires between discrete times t and t+1, its potential drops

to VR by time t+1. This event increments by wij the potential of every neuron i that does not

fire in that interval. A non-firing neuron i may also accumulate an external input stimulus

Ii[t] that is added to its potential at time t + 1. This term can be used to model sensory

inputs from neurons external to the modeled network, or the effect of artificially injected

current (as in certain in vitro experiments) between times t and t + 1. Apart from these

increments, the potential of a non-firing neuron decays exponentially towards a baseline

potential VB by a factor µ in [0, 1], that models the effect of the leakage current. (In the

continuous model, with no inputs the the potential evolves as V ′(t) = −(V − VB)/τ , where

τ is the characteristic decay time. The same rate of decay is obtained in the discrete model

with µ = e−∆/τ .) Note that VB may be higher or lower than VR [12]. ?[Tem ref melhor? ]

In neurobiology, the potentials VR, VB, and VT are customarily measured relative to the

extracellular fluid, and are typically between −40 and −80 millivolts [12]. ?[Verificar.

Ref melhor? ] However, the zero of potential is arbitrary. For this paper, we chose to

measure all potentials relative to VB, since formulas are generally simpler if VB = 0.

A. The neuron evolution equations

We introduce the auxiliary quantity Xi[t] which is the number of times that neuron i

fired between the discrete times t and t + 1, namely 0 or 1. We also define the age of a

neuron i at some discrete time t as the number of time steps that have elapsed since its last

firing; so that the age is r if Xi[t− r] = 1, and Xi[t− k] = 0 for all k with 0 ≤ k < r.

The neuron potentials then evolve by the formulas

Vi[t+ 1] =


VR if Xi[t] = 1,

µVi[t] + (1− µ)VB + Ii[t] +
N∑
j=1

wij Xj[t] if Xi[t] = 0.
(1)

The parameter VB is mathematically redundant, since the term (1−µ)VB in Eq. (1) could

be included in the external input term Ii[t]. It is justified by reference to biology: VB and µ

are supposed to be intrinsic parameters of the neuron, while Ii[t] is due to external sources

and depends on the context of the analysis or experiment.
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B. The firing function

Each firing indicator Xi[t] is assumed to be an independent Boolean random variable

whose distribution depends on the potential Vi[t] at discrete time t. Namely, Xi[t] is 1 with

probability Φ(Vi[t]), for some specified discrete firing function Φ [20, 21].

Considering the observed behavior of typical biological neurons, we assume that Φ(V ) is

a sigmoidal function, monotonically increasing from Φ(−∞) = 0 to Φ(+∞) = 1, with only

one inflection point. In the numerical examples and computer simulations of this paper, we

specifically assume a Gaussian firing function, the cumulative form of a normal distribution

ΦG(V ) =
∫ V

−∞

1

σ
φ
(
V − VT
σ

)
dV =

1

2
+

1

2
erf

(
V − VT
σ
√

2

)
(2)

where φ is the Gaussian distribution function with zero mean and unit variance, φ(z) =

(1/
√

2π)e−z
2/2, and erf is the error function erf(z) = (2/

√
π)
∫ z

0 e
−t2 dt. See Fig. ??.

Any sigmoidal firing function Φ, such as ΦG, can also be described as a smoothed version

of the shifted Heaviside step function ΦS(V ) = Θ(V − VT), that is zero for V < VT and

one for V > VT. Specifically, ΦG is the convolution of ΦS with a Gaussian distribution with

mean zero and deviation σ. The parameter σ defines the degree of smoothing, and VT is the

potential at which the firing probability is exactly 1/2.

C. Relationship to other models

In the limit when the firing function Φ tends to the sharp step function ΦS, (namely,

when σ → 0 in ΦG), the GLS model becomes identical to the discrete time version of the

deterministic LIF neuron, with firing threshold VT.

Applying the smooth function ΦG of the GLS model to a neuron potential Vi[t] is func-

tionally equivalent to applying the sharp firing function ΦS to the sum Vi[t] = δi[t], where

δi[t] is an independent random variable whose density distribution is D(δ) = Φ′G(VT + δ).

Therefore, the GLS model is quite similar to that of ??? [], which adds to the second line of

Eq. (1) a random noise signal ζi[t] before applying the sharp firing function ΦS.

There is a subtle difference, however: in ???’s model, the signals ζi[t] get integrated by

the neuron, whereas in the GLS model the virtual noise δi[t] is not. Thus, in ???’s model,

the effective firing function becomes smoother as the age r of the neuron increases, and
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narrows again when it fires; whereas in the GLS model the firing function is independent of

the neuron’s age.

However, in ???’s model the past noise inputs ζi[t− k] get attenuated by the leak factor

µk. If the variance of each ζi[t] is τ 2, the variance of the r accumulated noises
∑r
k=0 µ

kζi[t−k]

is τ̂ 2
r = τ 2(1− µr+1)/(1− µ), which is bounded by τ̂ 2

∞ = τ 2/(1− µ). Moreover, if τ is small

compared to VT, the firing probability (in both models) is significant only after the neuron’s

age r has reached a certain value, so that τ̂r is already close to the limit τ̂∞. Therefore, ???’s

model with noise variance τ is expected to produce results very similar to the GLS model

with Φ = ΦG and σ = τ̂∞ = τ/
√

1− µ.

D. Firing rate and potential distribution

An important macroscopic attribute of the network is the firing ratio, the fraction ρ[t] of

the neurons that fired between discrete times t and t+ 1, namely:

ρ[t] =
1

N

N∑
j=1

Xj[t] , (3)

Another important macroscopic attribute is the potential distribution P [t] at any discrete

time t, such that P [t](V ) dV is the fraction of neurons with potential in the range [V, V +dV ]

at time t.

Since the distribution of each variable Xi[t] depends only on the potential Vi[t], the

fraction ρ[t] can be computed from P [t]:

ρ[t] =
∫ ∞

0
Φ(V )P [t](V ) dV , (4)

The neurons that fire between t and t+ 1 have their potential reset to VR. They contribute

to the distribution P [t+ 1] a Dirac impulse at potential V = VR, with amplitude (integral)

ρ[t] given by Eq. (4). In subsequent time steps, the potentials of all neurons will evolve in

response to the firings of other neurons, according to Eq. (1). This process modifies P [t](V )

also for V 6= VR.

III. ISOLATED NEURONS

?[Refazer para Φ generica:]
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A popular experiment in neurobiology consists in injecting a constant current J into

an isolated neuron in vitro. In this experiment, N = 1 and there are no synaptic inputs.

Assuming that the current is turned on at t = 0 when the neuron’s potential is V [0] = VB = 0,

the second line of Eg. e.model reduces to

V [t+ 1] = µV [t] + I , (5)

where I = J∆/C, and C is the effective capacitance of the neuron. The potential V [t] is

therefore (1−µt)/(1−µ)I until the first firing, and thereafter it is Ur = µrVR+(1−µr)/(1−µ)I

for a neuron with age r. These potentials converge exponentially to U∞ = I/(1− µ). Note

that this limit does not depend on VR.

The probability that the neuron will reach age r or greater after each firing is therefore:

qr =

 1 if r = 0,

qr−1 (1− Φ(Ur−1)) if r > 0.
(6)

and therefore the probability of a neuron firing again after exactly r steps is Qr = qr− qr+1.

This is the distribution of intervals between firings. As r increases, the distribution of

spacings tends to an exponential distribution with decay ratio 1−Φ(U∞) = 1−Φ(I/(1−µ))

per step. That is, the firing tends to a Poisson process with rate 1/(1 − Φ(I/(1 − µ))).

Increasing the ratio I/(1− µ) reduces the mean age when the regime becomes Poisson-like,

and reduces the mean time between firings.

However, for smaller r the firing is not Poisson-like. Assuming Φ = ΦG, the firing

probability Qr is essentially zero until Ur > VT − 6σ, so that value of r is an effective

lower bound to the time between firings. In particular, if I < (1 − µ)(VT − 6σ) (meaning

that the injected current J cannot overcome the leakage current), the neuron is essentially

unreactive, since the mean time between firings would be more than a hundred million steps.

On the other hand, if I > (1− µ)(VT + 3σ), there will be an effective maximum age r.

With Φ = ΦG, the key parameters that determine the shape of the distribution Qr of

firing intervals are the relative position of U∞ in ΦG’s effective domain, namely A = (I/(1−

µ)−VT)/σ, and the decay rate µ. A secondary parameter is D = −log1−µ((VR−VT)/σ), that

basically shifts the distribution in r without changing its shape. ?[Conferir ] Figure ??

shows the distribution of firing intervals for some values of A and µ.

?[Verificar e adaptar:] Interestingly, this kind of Michaelis-Menten function is fre-

quently used to fit the (normalized) firing response of biological neurons to constant input
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currents [36, 37]. In both cases the usual firing rate can be written as F (I) = 2ρFmax, where

the maximal firing rate Fmax is a parameter to be empirically determined. These functions

F (I) can be seen in (Fig. ??).

IV. MEAN-FIELD ANALYSIS

Now we provide a mean-field analysis of a large network that is exact in the N → ∞

limit.

A. The Fokker-Planck equation

In the mean-field approach, one abstracts from the potentials of individual neurons and

works instead with the potential distribution P [t], which can be considered the stochastic

state of the network. The neuron evolution equation (1) is replaced by the Fokker-Planck

equation, that describes the evolution of P [t]:

P [t+ 1](V ) =
∫ +∞

−∞
P [t](U) Λ[t](U, V ) dU (7)

where Λ[t](U, V ) is the probability distribution of the potential at time t+ 1 of the neurons

that, at time t, have potential U . From Eq. (1), with VB = 0, we can conclude that Λ(U, V )

has two components: a Dirac impulse at V = VR, with amplitude (integral) Φ(U), resulting

from the probability of the neuron firing in that interval; and some distribution resulting

from the neurons that do not fire, with integral 1− Φ(U). The latter is the distribution of

values µU +
∑N
j=1 wij Xi[t] when i ranges over all neurons. To determine this distribution,

we must choose a specific stochastic model for the synapse strengths.

B. The K-random network model

For simplicity, in this section we assume that each neuron has a fixed number K < N of

input synapses and the same number of output synapses; that is, for each i there are only K

input strengths wik and K output strengths wki that are non-zero. In particular, we assume

that there are no self-couplings; that is, wii = 0 for all i. We also assume that the external

inputs Ii[t] are zero for all neurons and all times.
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In the mean-field approximation, one disregards correlations between the activity Xj of

a presynaptic neuron j and the strength wij of its synapse to neuron i. Therefore, the final

term of Eq. (1) can be factored as follows:

N∑
j=1

wij Xj[t] =

∑
j∈Ki

wij

 1

K

∑
j∈Ki

Xj[t]

 = Wi ρi[t] . (8)

where Ki is the set of the K neurons that make input synapses with neuron i, Wi is the sum

of the strength of those synapses, and ρi[t] is the fraction of those K neurons that fired in

the previous interval. Therefore, every neuron i that does not fire between t and t+ 1 (that

is, with Xi[t] = 0) has its potential changed by the formula:

Vi[t+ 1] = µVi[t] +Wi ρi[t] , (9)

We now assume that the non-zero synaptic strengths wij are drawn from a global distribution

with mean W/K and standard deviation κ/K. We will call the parameter W is the mean

neuron integration gain. It is the average increase in the potential of a neuron that would

result if all its inputs fired at once.

By the law of large numbers, the total input synaptic strength Wi of each neuron will be

a random variable with approximately Gaussian distribution, with mean W and variance

κ2/K. The quantity ρi[t] will also be a random variable, with mean ρ[t] and variance

ρ[t](1−ρ[t])/K. For large enough K, we can assume that the product Wi ρi[t] will also have

an Gaussian-like distribution with mean Wρ[t] and deviation λ[t] such that

λ2[t] =
ρ[t]

K

(
ρ[t]κ2 +W 2(1− ρ[t])

)
(10)

Therefore, the second component of the Fokker-Planck kernel Λ[t](U, V ) can be approxi-

mated by a Gaussian with mean U +W ρ[t], deviation λ[t], and integral 1− Φ(U). ?[Não

garanto minha álgebra! ]

C. The shape of the potential distribution

In this section we describe in more detail the nature of the distribution P [t] implied by

Fokker-Planck equation, after most neurons have fire at least once.

Let Sk[t] be the set of neurons with age k at discrete time t. Recall that the distribution

P [t] had a Dirac impulse component at potential U0 = VR and amplitude (integral) η0[t] =
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ρ[t− 1], representing the set S0[t] of neurons that fired in the interval from t− 1 to t. Some

of the neurons in S0[t] neurons may fire again in the next step, with probability Φ(U0), and

remain at potential U0. According to Eq. (9), the neurons of S0[0] that do not fire become

the set S1[t + 1], and contribute to the distribution P [t + 1] a narrow Gaussian peak with

mean U1 = U0 +Wρ[t], deviation

lambda[t], and integral η1[t+ 1] = η0[t](1− Φ(U0[t])).

A fraction Φ(U1) of the neurons in S1[t+ 1] will fire again between times t+ 1 and t+ 2;

the remainder will comprise S2[t+2]. Assuming that κ/
√
K is very small compared to σ, we

can assume that the distribution of potentials of S1[t+ 1] will continue to be Gaussian, but

with its integral reduced by the factor 1−Φ(U1), its mean shifted to U2 = µU1 +Wρ[t+ 1],

and its variance changed to τ 2
2 = µ2τ 2

1 +ρ2[t]κ2/K. ?[??? ] And so on. It follows that, once

all neurons have fired at least once, the distribution will be approximately a superposition

of Gaussian peaks with integrals η0[t], η1[t], η2[t], . . ., mean potentials U0[t], U1[t], U2[t], . . .,

and deviations τ0, τ1, τ2, . . ., that evolve according to the recurrences

U0[t+ 1] = VR , (11)

Uk[t+ 1] = µUk−1[t] +Wρ[t] , (12)

η0[t+ 1] = ρ[t] , (13)

ηk[t+ 1] = (1− Φ(Uk−1[t])) ηk−1[t] , (14)

τ0[t+ 1] = 0 , (15)

τ 2
k [t+ 1] = µ2τ 2

k−1[t] + λ2[t] , (16)

for all k ≥ 1. See Fig. ??). ?[Conferir a recorrência de τk.]

?[Variância de U0 deveria ser um τR em vez de 0. Ou seja, mesmo o pico

em VR deveria ser uma gaussiana.]

The amplitude ηk[t] is the fraction of neurons with “age” k at discrete time t (that is,

neurons that fired between times t− k − 1 and t− k, and did not fire between t− k and t).

The mean potential of those neurons, at time t, is Uk[t]. In particular, η0[t] is the fraction

ρ[t−1] of neurons that fired in the previous time step, between discrete times t−1 and t and

U0[t] is always VR. For this type of distribution, the integral of Eq. (4) becomes a discrete

sum:

ρ[t] =
∞∑
k=0

Φ(Uk[t]) ηk[t] . (17)
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?[Completar ]

?[Citar o artigo com esta análise ]

D. The Dirac train approximation

The widths τk[t] of the Gaussian peaks are inversely proportional to
√
K, and are therefore

fairly narrow for the typical values of K in vertebrate brains (104 or more). In what follows,

we will assume that the peak widths τk[t] are zero; that is, we approximate each peak of

P [t] by a Dirac impulse with the same mean and integral. While this approximation may

disturb some subtle effects, it seems to still yield useful information about the behavior of

the network, as confirmed by simulations with finite N and smaller K. ?[Confirmar.]

?[Colocar em algum lugar:] As observed before, we can limit our consideration to

systems where Φ(VR) << 1 and Φ(VB) << 1.

?[Dizer mais sobre W muito grande, W → 0, etc. Notar que se Φ(Uk[t]) = 1,

então ηk+1[t+ 1] será zero, etc. Dar exemplos de soluções periódicas.]

With this approximation, the stochastic state of the network at time t can

be defined as the list of the parameters of those Dirac impulses, namely x[t] =

((η0[t], U0[t]), (η1[t], U1[t]), (η2[t], U2[t]), . . .). Formulas (11–14) can be summarized by a de-

terministic (but non-linear) function F that maps states to states: x[t+ 1] = F (x[t]). This

general type of recurrence is known as a dynamic system in mathematics, or as a map

(specifically, a coupled maps lattice) in physics [32, 33]. Such systems have been exten-

sively studied in chaos theory and other disciplines, and are known to exhibit many types of

complex behaviors (such as fixed points, periodic and quasi-periodic sequences, and strange

attractors), depending on F and on the initial conditions.

E. General considerations

?[Repensar esta seção.]

In the mean-field context, assuming VB = 0, the evolution of the network’s state depends

on the function Φ, the other model parameters (VR, µ, K, W , and κ), and the starting state

(the initial distribution of potentials P [0]). The following general considerations apply for

any Φ of the type described above.
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1. Dead regime

If Φ(VB) is exactly zero, the network admits a dead regime, where the neuron potentials

are all equal to VB, and there is no firing. This regime is stable if Φ′(VB) <???, meaning

that any spontaneous firing is unlikely to cause ?[??? ]

In the tend to VB, in spite of occasional spontaneous firings. In this regime, P has only

one significant peak U0 = VB and η0 = 1.

In this case, however, interesting dynamics is observed if Φ′(VB) > 0 and W has a precise

value WC In that situation, a single firing creates an avalanche of firings with a characteristic

distribution of size and duration. Se the companion paper [? ].

If instead Φ′(VB) = 0, and µ < 1, the dead regime is attractive: starting from any state

where the neuron potentials are sufficiently close to VB, they will tend to due to the leakage

current.

F. Stationary phases

In the context of mean-field analysis, a stationary phase is a potential distribution P (V )

of membrane potentials that does not change with time. In such a regime, quantities Uk

and ηk do not depend on the time t. Therefore, the evolution equations (??–??) become a

pair of recurrence equations:

η0 = ρ =
∞∑
k=0

Φ(Uk)ηk , (18)

U0 = 0 , (19)

ηk = (1− Φ(Uk−1)) ηk−1 , (20)

Uk = µUk−1 +Wρ , (21)

for all k ≥ 1. Since these equations are homogeneous in the ηk, one needs to add the

normalization condition
∑∞
k=0 ηk = 1. The recurrences (18–21) can be solved numerically,

given the values of µ and W and the firing function Φ(V ) (Supplementary Fig. ??). In some

special cases, the solution has a closed analytic formula.

?[Note that a stationary phase in the mean-field context is not stationaryat

the individual neuron level. The neurons are constantly firing and shifting

between the potentials Uk. It is only the number of neurons of each age that
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is constant.]

G. Degenerate stationary periodic regimes

?[Repensar esta seção. Deveria virar uma justificativa para evitar Φs com

plateaus 0 ou 1, pois isso cria regimes estacionários e periódicos “não inter-

essantes”. Estes regimes não existem com Φ = ΦG, mas em seu lugar existem

transientes muito longos semelhantes a esses regimes estacionários.]

?[Mencionar as conjeturas de que regimes periódicos são guarda de

memória. Será que podemos mostrar que regeneram memória? ]

Some combinations of parameters allow (or even require) uninteresting regimes. If

Φ(VB) > 0, a fixed fraction of the neurons will fire spontaneously even without any input.

?[Does this converge to a steady regime, or periodic, or chaotic, or...? ]

If Φ(VB) = 0 but Φ(VR) > 0, there are still “uninteresting” stationary or periodic regimes

where every neuron fires repeatedly in a short and repetitive or quasi-repetitive pattern,

even if it does not receive any inputs. ?[Example? ]

For this reason, in what follows we will assume that Phi(VB) = 0 and Φ(VR) = 0. Even

so, the network admits uninteresting regimes if W is too large. In particular, if W ≥ WB

where WB = 2(VS−µVR), there is a stationary regime P with only two peaks, with potentials

U0[t] = VR and U1[t] = UM, where UM = µVR + W/2, and intensities η0 = η1 = 1/2. In this

regime, half the neurons fire on alternate sampling times, and their inputs are sufficient to

raise the potential of the other half to UM, above the saturation limit VS, causing them all

to fire in turn at the next time.

If W is strictly greater than WB, this stationary regime is surrounded by an infinitude

of cyclic regimes with period 2, where the potential U1[t] alternates between UM + εW and

UM − εW , and η0[t] alternates between 1/2 + ε and 1/2− ε, for a sufficiently small ε. The

stationary regime and these periodic regimes are marginally stable,and have no attraction

basin: they are stable in the absence of external disturbances, but any sufficiently small

disturbance will shift the network to a slightly different regime in that class.

More generally, for any p ≥ 2 and suitable values of W , µ, VR, VT, and σ, there is a

stationary state whose potential distribution has exactly p peaks, with intensities Uk =

µkVR + (W/p)(1 − µk)/(1 − µ) and equal amplitudes ηk = 1/p. This regime is possible if
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Φ(Up−1) = 0 but Φ(Up) = 1. Then, at each sampling time, the fraction 1/p of the neurons

with potential Up will fire and drop to U0, while the rest moves up the ladder without firing.

As in the case p = 2, this stationary regime is surrounded by p − 1 dimensions worth of

cyclic regimes with period p (or sub-multiples thereof), where the potentials and fractions

deviate slightly from those of the stationary state.

Note that these regimes are “uninteresting” also because they do not depend on the shape

of the function Φ, since they only sample it where it is 0 or 1. Therefore, they appear also

in the mean-field analysis of the deterministic (non-stochastic) LIF model, where Φ is a step

function with any threshold between Up−1 and Up [? ].

?[Observar que o caso normal tem Φ(VR) = 0 mas Φ′(VR) = 0, logo não tem o

comportamento cŕıtico de monomial r = 1.]

?[Repensar o que é o W cŕıtico quando µ > 0 e Φ é simoidal mesmo e

Φ(VR) = 0 Φ′(VR) = 0 (o caso realista) e W < WB (o caso interessante).]

?[Temos avalanches ed alguma forma? ]

V. THE MODEL WITH DYNAMIC PARAMETERS

It is known that we always can turn a model, which is critical only with a fine tuned

parameters, into a model with dynamic parameters that spontaneously adjusts them toward

the critical values, a phenomenon known as self-organized criticality (SOC) [8–10, 26, 28–31].

In this section, we modify the basic GLS model (Eq. 1) to achieve this behavior.

Several authors have successfully obtained SOC in neural networks by means of dynam-

ically varying synaptic strengths; that is, replacing the constants wij in Eq. (1) by time-

varying parameters wij[t]. The general idea is to reduce the strength of a synapse after the

presynaptic neuron has fired, and let it slowly recover towards a higher resting strength in the

absence of pulses [9, 10, 30, 31]. This dynamics is intended to mimic biological phenomena

like the the local depletion of neurotransmitter vesicles after a synaptic discharge.

The main drawback of this approach is that it involves KN independent state variables

and equations for N neurons with K input synapses each. Therefore, we propose instead to

introduce two time-varying parameters for each neuron i, the input gain γi[t] and the output

gain δi[t], that modulate the strength of its input and output synapses, respectively. That
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is, we replace the second line of Eq, (1) by

Vi[t+ 1] = µVi[t] + (1− µ)VB + Ii[t] + γi[t]
N∑
j=1

wij δj[t]Xj[t] (22)

The input gain parameters γi evolve according to the equation

γi[t+ 1] =

 γR if Xi[t] = 1,

µγγi[t] + (1− µγ)γB if Xi[t] = 0.
(23)

where µγ is related to the characteristic recovery time for the neuron’s sensitivity to input

signals; γR is the value that γi assumes immediately after the firing of neuron i; and γB is

the target value for its recovery while neuron i does not fire. The output gain δi evolves by

a similar equation

δi[t+ 1] =

 δR if Xi[t] = 1,

µδδi[t] + (1− µδ)δB if Xi[t] = 0.
(24)

where µδ, δR, and δB are analogous to µγ, γR, and γB, respectively. We call the list

(γB, γR, µγ, δB, δR, µδ) the hyperparameters of this extended GLS model, in contrast to the

fixed parameters (VB, VR, µ, VT, σ,N,K,W, κ).

The great advantage of this new mechanism is that we have only 2N new variables and

evolution equations for γi[t] and δi[t], instead of KN equations for the wij[t].

We give an example of self-organization of the average gain γ[t] =< γi[t] > towards the

point γc = 1, (for WC = 1) starting from an average γ[t = 0] 6= 1 (Fig. 1a). Of course, this

can be done for any value of W since γc(W ) = 1/W . See (Fig 1b) for the avalanche size

distributions and (Fig. 1c) for data collapse.

The good thing is that this dynamics has as attractor the value WC (for large N , [30, 31])

since if the network is in the active phase, W [t] decreases due to the sites with Xj[t] = 1

and if the network is in the silent state then W [t] increases due to the synaptic recovery.

VI. DISCUSSION

A. Static phase transitions

The discrete time integrate-and-fire models of Soula et al. [16] and Cessac [17–19] have

a crucial difference to the Galves-Locherbach model [20, 21]: their source of stochasticity is
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FIG. 1: a) Self-organization to criticality of the average gain γ[t] by using dynamical neuronal gains

γi[t] starting from different initial conditions, with γi(t = 0) ∈ [0, γmax] so that the average gain is

γ(t = 0) = γmax/2. The horizontal dashed line is the value γc = 1. b) Avalanche size distribution

(with exponential bins) P (S) for several N . The solid line S3/2 is a guide to the eyes. c) Data

collapse of the complementary accumulated function g = S1/2C(S/N c). The cutoff exponent is

c = 1/2.

noise in the currents, not a stochastic firing function Φ(V ). So, the models are different and

it is not clear, from the literature, if these model equations present phase transitions as a

function of W . Larremore et al. model [23] corresponds to the monomial case with r = 1,

but these authors do not report any phase transition (which may be a feature produced by

the inhibitory neurons in their model). Although they used r = 1, the ceaseless activity

found by these authors is very similar to the WC = 0 case that we have obtained with r < 1.

The phase transitions found in this paper are of the class of absorbing state phase tran-

sitions (continuous and discontinuous) [26–28]. It seems to us that such kind of transitions

are not possible with deterministic IF neurons, that present in general transitions to syn-

chronized states or transitions between two different kinds of activity [5, 13, 14]. Perhaps,

a stochastic firing function Phi(V ) is a necessary ingredient to this kind of transitions. If

so, this is the first time that such transitions are reported in discrete-time integrate-and-fire

neuronal networks.

B. Self-organized criticality

To obtain self-organized criticality by using dynamical synapses is by now a well diffused

idea [9, 10, 30, 31]. This idea is plausible biologically, but is costly for simulations since we

must work with a number of equations equal to the number of synapses.

In this work we propose a new SOC mechanism, based in the presence of the critical

surface γc(W,µ) = (1 − µ)/W instead of a single critical point WC. The idea is to have N

dynamical gains γi[t] instead of the N(N − 1) synapses wij[t]. We have demonstrated by

simulations that the idea seems to work very well. A mean-field calculation of this result is

reserved to another paper.

This mechanism has never been examined in the literature but is plausible biologically,



21

being related to the well know phenomenon of spike adaptation [34, 35]. The neuronal gain

hardly would be a fixed quantity, but is related on the somatic membrane features that could

be depend on the neuron activity. Indeed, our mechanism Eq. gt says that if the neuron

fires, its gain (probability of a next firing) slightly diminishes, recovering to the original

value after that. This is a plausible effect.

VII. CONCLUSION AND PERSPECTIVES

In this paper we studied phase transitions in the class of stochastic neuronal networks

introduced by Galves and Locherbach [20, 21]. We developed a mean-field analysis frame-

work (the N → ∞ limit) and explored some of the phase diagram by simulations. We

found basically tree kinds of behavior: second order phase transition for Φ(VR) = 0 and

Φ′(VR) = 1, first order phase transitions for Φ(VR) = Φ′(VR) = 0 and no phase transition

(ceaseless dynamics for small W ) for Φ(VR) = 0, Φ′(VR) = +∞.

From the second order critical surface γc(W,µ) = (1−µ)/W found in the phase diagrams,

we proposed a new mechanism for self-organized criticality in neuronal networks based in

dynamical gains γi[t] instead of synaptic dynamics as previously done in [9, 10, 30, 31]. This

new SOC mechanismo is one of the most important results of the paper.

We conclude that the stochastic neuronal networks introduced by Galves and

Locherbach˜[20, 21] present very rich behavior in terms of phase transitions. The next

research steps could be the study of different network topologies, different firing functions,

different kinds of synapses (probabilistic, chemical, electric), the effect of inhibitory neu-

rons [23], balanced networks [13], external inputs, learning in such networks, a more rigorous

analysis of Self-organized Criticality, as done in [10, 30, 31]. We suggest that this research

program with GLS neurons promise new and very interesting results.
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IX. METHODS

The phase diagrams for the mean-field model with µ > 0 (Figs. ???) were obtained by

simulating the evolution of the potential distribution P [t](V ) according to Eqs. (??–??),

starting from an arbitrary initial distribution, until reaching a stable distribution. Only the

first 100 peaks (Uk, ηk) were considered, since, for the given µ and Φ, there was no significant

probability beyond that point. In any case, those 100 probabilities ηk were renormalized for

unit sum after each time step.

The avalanche statistics were obtained by simulating the evolution of a finite network of
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N neurons, with uniform synaptic strengths wij = W (except wii = 0) and critical parameter

values. Each avalanche was started with all neuron potentials Vi[0] = VR = 0 and forcing

the firing of a single neuron by setting Xi[0] = 1. The network was then simulated according

to Eq. (1) until all activity ceased and all potentials had decayed to such low values that

further firings would not be expected for thousands of steps.
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FIG. 2: SKETCH - monomial function with VT > VB
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