
Homeostatic Criticality in Neuronal Networks1

Gustavo Menesse and Osame Kinouchi∗2

Departamento de F́ısica, FFCLRP, Universidade de São Paulo,3

Ribeirão Preto, SP, 14040-901, Brazil4
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Abstract8

In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality9

is only present for vanishing driving external fields h → 0. Considering that this is rarely the10

case for natural systems, such a restriction poses a challenge to the explanatory power of these11

models. Besides that, in models of dissipative systems like earthquakes, forest fires and neuronal12

networks, there is no true critical behavior, as expressed in clean power laws obeying finite-size13

scaling, but a scenario called ”dirty” criticality or self-organized quasi-criticality (SOqC). Here,14

we propose simple homeostatic mechanisms which promote self-organization of coupling strengths,15

gains, and firing thresholds in neuronal networks. We show that near criticality can be reached and16

sustained even in the presence of external inputs because the firing thresholds adapt to and cancel17

the inputs, a phenomenon similar to perfect adaptation in sensory systems. Similar mechanisms18

can be proposed for the couplings and local thresholds in spin systems and cellular automata, which19

could lead to applications in earthquake, forest fire, stellar flare, voting and epidemic modeling.20

The idea of self-organized criticality (SOC) [1], where a system would have a critical21

point as an attractor of its dynamics in the absence of any fine-tuning of parameters, in22

some sense has never truly been achieved. The most successful models in this ideal are23

usually conservative, such as Abelian sandpiles [2–4], but conservation can be thought as a24

form of fine-tuning, that is, the dissipation parameter in the transmission of grains must be25

zero. Also, the infinite timescale separation between driving and avalanches in SOC models26

can be viewed as yet another fine-tuning requisite.27

When we consider dissipative systems such as earthquakes, forest fires or neural net-28

works, we find that only self-organized quasi criticality (SOqC), where the system performs29

stochastic oscillations around the critical point, holds [5, 6]. Several of such models include30

continuous drive and dissipation that can be viewed as homeostatic mechanisms which tune31

the network toward the critical region.32

In the case of neuronal networks, the experimental motivation for SOqC models is to33

explain neuronal avalanches [7–11]. The main studied homeostatic mechanisms are related34

to synaptic dynamics [12–14] but dynamical gains [15–18] and firing thresholds have also35

been considered [19] (for a review see [20]).36
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In the absence of homeostatic mechanisms, a critical regime is obtained only with strong37

and non-local fine-tuning on, for example, all coupling weights (synapses) Wij, so that38

the distribution P (Wij) must have average (the control parameter) 〈Wij〉 = W = Wc. With39

homeostasis, this is alleviated: now we can start from any distribution Pt=0(Wij) and, after a40

transient (the self-organization process), one obtains a stationary P ∗(Wij) ≡ limt→∞ P (Wij)41

where W ∗ ≡ limt→∞ 〈Wij〉 ≈ Wc. Similar reasoning applies to neuronal gains (Γi) and firing42

thresholds (θi).43

One important aspect in any SOC model is that phase transitions, and therefore critical-44

ity, exist only for zero or very small external field [21], so any homeostatic mechanism will45

need to self-organize the system so that the effective external field vanishes.46

Here, first we show how such a homeostatic mechanism works in a simple analytic mean-47

field model. Then, we present simulation results for sparse random networks with K neigh-48

bors per node. The mechanisms are simple and very general: they can be adapted to systems49

composed of other units like spins, cellular automata, discrete time maps and continuous50

time neurons with pulse coupling represented by weights Wij.51

We consider a network of N discrete-time stochastic leaky integrate-and-fire neurons [15,52

16, 18, 22–25]. A Boolean indicator Xi ∈ {0, 1}, i = 1, . . . , N , denotes silence (Xi = 0) or53

the firing of an action potential (spike, Xi = 1). The membrane potential of neuron i evolves54

according to:55

Vi(t+ 1) = µiVi(t) + Ii +
1

K

K∑
j=1

WijXj(t) , (1)56

where 0 ≤ µi ≤ 1 are leakage parameters and Ii are external inputs. The directed synaptic57

weight matrix Wij has exactly K incoming links from j to i. The outgoing links, by this58

construction, have a binomial distribution with average K and standard deviation σ =59 √
K(1−K/(N − 1)).60

If at time step t the neuron fires, its membrane potential is reset, Vi(t+1) = 0. Otherwise,61

the neuron follows Eq. (1). A spike occurs with probability:62

P (Xi(t) = 1 | Vi(t)) ≡ Φi(Vi(t)) , (2)63

where Φ(V ) is the so-called firing function. The model incorporates an absolute refractory64

period of one time step by imposing Φ(0) = 0.65

For this class of models, there are no strong requirements on the firing function Φ be-66

sides sigmoid shape, but for analytical convenience we use the so called linear-saturating67
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function [15, 19, 24]:68

Φi(Vi) =



0 if Vi < θi ,

Γi (Vi − θi) if 0 < Vi < V S
i ,

1 if Vi > V S
i ,

(3)69

where V S
i = 1/Γi + θi is the saturation potential. Here, θi represents the firing threshold for70

neuron i.71

In the absence of homeostatic tuning (which we call the static model), assuming that72

the distribution P (Wij) has finite variance, the average synaptic weight W = 〈Wij〉 can be73

taken as a control parameter. The same applies to the neuronal gains Γi, firing thresholds θi,74

leakage parameters µi and inputs Ii, so that Γ = 〈Γi〉 and µ = 〈µi〉 can also be considered as75

control parameters. Interpreting θ = 〈θi〉 as the average local field (local adaptation current)76

and I = 〈Ii〉 as the average external field (external input current), we have that h = I − θ77

is the total or effective field.78

The fraction of spiking neurons, or firing density, ρ(t) = 〈Xi(t)〉 ≡ 1
N

∑N
i=1 Xi(t) rep-79

resents the activity of the system. Its time average 〈ρ(t)〉t, calculated after disregarding80

transients, is taken as the relevant order parameter.81

When Γ,W and θ are fixed (static model), a mean-field approximation (equivalent to82

taking the K →∞ limit) can be calculated from:83

ρ(t+ 1) =

∫
Φ(V )P (V, t) dV , (4)84

where P (V, t) is the distribution of voltages at time t [15, 18].85

For µ = 0, considering the case where the stationary potentials fall within the linear86

(0 < Vi < V S
i ) branch of equation (3), the solution leads to the mean-field map:87

ρ(t+ 1) = (1− ρ(t))Γ(Wρ(t) + h) , (5)88

The stationary state is obtained solving Eq. (5):89

ρ± =
ΓW − 1− Γh±

√
(ΓW − 1− Γh)2 + 4Γ2Wh

2ΓW
. (6)90
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When the field is h < 0, we have a discontinuous (first order) phase transition and, when91

h > 0, there is always activity ρ > 0 and no transition [15, 19].92

For h = 0, we have a second order phase transition, which is given by:93

ρ(W |Γ) =

(
W −Wc(Γ)

W

)β
, (7)94

for W > Wc = 1/Γ and ρ = 0 (absorbing state) for W < Wc. The order parameter exponent95

is β = 1. The hyperbola Wc(Γ) = 1/Γ is a critical line in the W × Γ plane. Similar to what96

occurs in the Ising model, where the important variable is the combined quantity J/T , here,97

the important variable is W̃ ≡ ΓW , which defines the critical point W̃c = 1 (see Fig. 1).98

For W̃ ≥ 2 we see a period-2 orbit in the activity ρ(t), which is not relevant to the present99

discussion and has been studied in detail elsewhere [15, 19].100
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FIG. 1. a) Order parameter ρ(W̃ |µ = 0) as a function of W̃ for different number of neighbors K.

From left to right, K = 4, 8, 16, 32 and mean-field (solid); b) ρ(W̃ |K = 4) for varying leakage

parameter µ. From right to left, µ = 0, 0.1, 0.3, 0.6 and 0.95. Networks size N = 10, 000. The

bifurcation at W̃ = 2 leads to the creation of a period−2 synchronous regular state [15, 19].

For random networks, a continuous phase transition is also observed:101

ρ(W̃ |µ) = C(K,µ)

(
W̃ − W̃c(µ)

W̃

)
, (8)102

(see Fig. 1). The critical point is independent of K, but shows a dependence on µ that103

seems to follow W̃c(µ) = (1−µ)W̃c(0) (see [26] for the infinite K limit). Meanwhile, β = 1 is104

independent of K and µ, which is compatible with the finding of mean-field DP exponents105

in a large set of experiments, for networks with presumable very different wiring topology106

and leakage parameters [7, 11, 27].107
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Notice that, for zero activity, Eq. (1) has a steady state V ∗ = I/(1 − µ). From the108

condition V ∗ > θ for firing, we define the effective field h = I − (1 − µ)θ for general µ. At109

the transition to the active phase, V ∗ = θ, so that h must be zero [19].110

To tune the network to the critical region [5, 12, 13, 15, 16, 18–20]) we introduce our111

model with homeostatic mechanisms. The calculations are done at the mean-field level112

for µ = 0, but similar results can be shown in simulations for general K and µ. First,113

we apply a depressing-recovering dynamic to the control parameter W̃ (t) ≡ 〈ΓiWij(t)〉.114

Following biological motivations, we propose two mechanisms: one for neuronal gains Γi(t)115

and another for synaptic weights Wij(t). We use dynamics similar to the Levina-Hermann-116

Geisel synaptic dynamics [12] for both variables:117

Wij(t+ 1) = Wij(t) +
1

τW

(
Ai(1− µi)

Γi(t)
−Wij(t)

)
118

− UWWij(t)Xj(t) , (9)119

Γi(t+ 1) = Γi(t) +
1

τΓ

(Bi − Γi(t))− UΓΓi(t)Xi(t) . (10)120

The dynamics for synaptic weights (Wij) has a basal level Ai(1− µi)/Γi(t), a recovery time121

τW and a depressing factor 0 < UW < 1 related to the fraction of neurotransmitter vesicles122

depleted in the synapse due to a presynaptic spike Xj = 1. A similar idea applies to the123

dynamics of membrane excitability (neuronal gains Γi).124

The coupling between Wij(t) and Γi is necessary to get W ∗ = (1 − µ)/Γ∗, resulting in125

W̃c = 1−µ. This is a small non-locality in the basal level of synaptic weights, which says that126

the effective recovery time of synapses τW depends on the neuronal gain Γi and on the leakage127

parameter µi. In biological neurons, this coupling between synapses and neuronal excitability128

could be mediated by retrograde signals (active dendritic spikes [28, 29]). Specifically, it is129

known that excitability of the cell body down regulates neurotransmitter re-uptake by using130

endocannabinoids produced pre-synaptically [30, 31].131

Notice that in the Γi(t) dynamics, the activity signal Xi is local, referring to the cell body132

with gain Γi. Averaging over sites (in the µ = 0 case), the MF equations become:133

W (t+ 1) = W (t) +
1

τW

(
A

Γ
−W (t)

)
− UWW (t)ρ(t) , (11)134

Γ(t+ 1) = Γ(t) +
1

τΓ

(B − Γ(t))− UΓΓ(t)ρ(t) . (12)135

To achieve criticality, we also need h to be 0. For spin systems, zero external magnetic136

field is a natural condition, despite being a fine-tuning operation seldom discussed in the137
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literature of neuronal avalanches [19, 21]. Here, for integrate-and-fire neurons, this condition138

is not so natural: we must fine-tune θc = I/(1 − µ) in order to achieve hc = 0. Therefore,139

we also need a homeostatic mechanism to set h to zero.140

We propose a simple firing-threshold adaptation mechanism:141

θi(t+ 1) = θi(t)−
1

aτW
θi(t) + bUW θi(t)Xi(t) , (13)142

θ(t+ 1) = θ(t)− 1

aτW
θ(t) + bUW θ(t)ρ(t) , (14)143

where θ(t) ≡ 〈θi(t)〉. Here, the θ timescale is presented as a fraction a, b of the timescales144

for synaptic dynamics (UW , τW ).145

From the mean fields equations (5), (11), (12) and (14), we get the following relevant146

fixed point:147

ρ∗ =
1

ab τWUW
, (15)148

Γ∗ =
B

1 + τΓUΓ

ab τWUW

, (16)149

W ∗ =
A

Γ∗(1 + 1
ab

)
, (17)150

h∗ = I − θ∗ = ρ∗
(
W ∗ − 1

Γ∗

)
+
ρ∗2

Γ∗
−O(ρ3) (18)151

Comparing the critical point (ρc = 0+,W̃c = WΓ = 1,hc = 0) to the fixed point above, we152

can see that two conditions are needed to reach quasi-criticality. First, we need ab� 1 (large153

separation of W and θ time scales), which is a very common feature in SOC models [32].154

Second, we need to fine-tune A = 〈Ai〉 ≈ 1 to have h = O(ρ∗2) ≈ 0 [26].155

We use W̃ time scales in the order of 100 ms (τW = 300 and τΓ = 100). Therefore,156

W̃ evolves at timescales comparable to that of network activity propagation. On the other157

hand, we model the adaptive threshold mechanism as a long-term homeostatic regulation158

(a > 103), which means that this adaptation process occurs on a timescale slower than that159

of network dynamics.160

The W̃ ∗ component of the fixed point is always subcritical, but tends to the critical value161

when (ab)→∞. From a biological perspective, staying in the vicinity of a subcritical state162

might be advantageous, as it would decrease the risk of spontaneous runaway activity linked163

to dysfunctional regimes such as epilepsy [33].164

For a robust quasi critical regime, as reflected in near critical avalanches, the system165

needs to evolve towards a stable fixed point not far from the true critical point, as quickly166
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FIG. 2. Mean-field stability diagram. Argument (top) and modulus (bottom) of leading

eigenvalue. Colored regions correspond to systems with a stable fixed point. The area bounded

by dashed white lines corresponds to fixed points whose leading eigenvalues have small argument

and modulus (ω < 0.01 and |λd| < 0.9999). White regions correspond to dynamics with unstable

fixed points.
8



as possible, while keeping oscillations around the equilibrium to a minimum. This can be167

achieved by minimizing the spectral radius of the Jacobian matrix. In Fig. 2, we study the168

stability of fixed point (ρ∗,Γ∗,W ∗, θ∗) with respect to timescale separation parameters a,b.169

Colored regions indicate dynamics with stable fixed points.170

Parameter values inside the area bounded by dashed white lines correspond to leading171

eigenvalues with modulus |λD| < 0.999 and argument ω < 0.01, which give rise to dynamics172

with robust quasi-critical behavior. Thus, for a given value for parameter a, there is a range173

of b values (coarse tuning) that allow the homeostatic mechanism to reach and maintain h174

and W̃ values low enough (|h| ≈ O(10−4) [21] and W̃ ≈ W̃c −O(10−2)) to produce critical175

avalanches.176

Results for mean field and random network simulations are shown in Fig.3a. Initial177

conditions were chosen from different distributions (constant values for Γi(0) = [0.5, 1.5],178

normal distribution N[0.75,0.01] and N[1.25,0.01] for θi(0), and uniform distribution U[0,2] for179

Wij(0)). In all cases, trajectories in W̃ ×h space (see Fig3.b) show low amplitude stochastic180

oscillations around a slightly subcritical point, with mean amplitude ≈ 0.01 in W̃ and 10−4
181

in h. In Fig3c, we depict the activity ρ(t), which displays SOqC avalanches with a power182

law regime sufficient to explain experimental data.183

We measured the size and duration of avalanches for trajectories with 106 time steps.184

Near the critical point, we expect avalanche sizes S and durations D to be distributed185

according to F (s) = P (S > s) ∝ s1−τ and F (d) = P (D > d) ≈ d1−τd respectively, with186

exponents τ = 3/2 and τd = 2 (mean-field Directed Percolation class [15]).187

The emergence of avalanches, even with the correct exponents, is not a sufficient condi-188

tion for identifying criticality [34], therefore we investigate the relationship between mean189

avalanche size and duration 〈s〉 (d) leading to the exponent relation m = (τD − 1)/(τS − 1).190

At criticality, we expect m = 2. To compare simulation results with theory, we use the191

distance to criticality coefficient dcc = m − mfitted, as proposed in [35]. In this case, to192

compute dcc, we take the mean value of m fitted for the simulations with different N for193

three a, b values.194

Fig. 4 show how the finite-size scaling of avalanche sizes and durations improves with195

increasing timescale separation a. However, perfect finite-size scaling is never achieved for196

finite a values. Since SOqC criticality is not perfect [6], our results are in good agreement197

with what is expected when the underlying phase transition is on the DP class. Fig. 5198
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FIG. 3. Self-organization of W̃ (t) and θ(t) from different initial conditions (blue and

red). The target values are θc = I = 0.1 (or h = I − θ = 0) and W̃c = 1. (a) Time series for

θ(t), W̃ (t) and ρ(t) (green). Mean field (dashed lines) and random network (solid lines) with

K = 32 and N=10000. (b) Stochastic oscillations around the fixed point for the last 204 time

steps of simulation, seen in phase space W̃ × h. (c) Avalanche behavior for stationary ρ(t).

Parameters: τW = 300,τΓ = 100, UW = 0.01, UΓ = 0.01,B = 1, A = 1, a=5000 and b=0.05.

shows that the exponent’s relation also tends to agree with theory for increasing separation199

of time scales a→∞, resulting in small distance to criticality (dcc < 0.01) for a = 106.200

Our neuronal network model self-organizes toward quasi-criticality even in the presence of201

nonzero inputs Ii. This is an important result, because real neurons always receive external202

inputs from other areas. The homeostatic thresholds θi produce |h| ≈ O−4, an (almost203

exact) adaptation to the inputs. That is, instead of fine-tuning h = 0, as done in standard204

phase transitions and previous SOC/SOqC models, here we self-organize the local fields205

hi = Ii − θi(t) toward zero. This is not a mere detail, but a crucial ingredient for a truly206

self-organized critical model.207
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FIG. 4. Finite-size scaling of avalanche size and duration for increasing values of a

and network size N . First row shows scaling for sizes, and second row for durations. The

scaling improves with increasing a, reaching perfect finite-size scaling when a→∞. Results

obtained for a quenched simulation of a directed random network with K = 32. Parameters:

(a,d) a = 104 and b = 8× 10−2, (b,e) a = 105 and b = 10−2 and (c,f) a = 106 and b = 10−3.

FIG. 5. Average avalanche size vs duration for increasing values of timescale

separation a and network size N . Directed random network with K = 32. Average initial

conditions: θ(0) = 0.09, Γ(0) = 0.75 with W (0) = 1, input I = 0.1. (a) Parameters a = 104 and

b = 8× 10−2; (b) a = 105 and b = 10−2 and (c) a = 106 and b = 10−3. Fitted exponent relation

(mfitted) and distance to criticality coefficient (dcc) also shown.
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The self-organized system hovers around a stable (quasi critical) fixed point in small208

amplitude orbits, minimizing the large stochastic oscillations observed in previous mod-209

els [16, 18, 19]. In particular, the system gets closer to criticality as the timescale ratio210

a = τθ/τW = τθ/τΓ increases.211

Regarding the unavoidable fine-tuning A ≈ 1 emerging from our analysis, we need to212

remember Hernandez-Urbina and Herrmann: fine-tuning a hiperparameter in local homeo-213

static mechanisms is very different from global fine-tuning in the original static model control214

parameters {Wij, hi} [20, 36]. Anyway, a challenge to the community persists: could we get215

A ≈ 1 without any form of fine-tuning? We conjecture that this is impossible: the need for216

h∗ ≈ 0 will impose strict conditions similar to A ≈ 1 to any other homeostatic model [26].217

Generalizing our results, it is plausible that any system under the influence of external218

(local or global) fields — as in earthquakes, forest fires, voting or epidemics models based219

in spins, or even continuous time integrate-and-fire dynamics — can achieve a near critical220

regime through the inclusion of opposite local fields (as −θi(t) here) whose timescale should221

be much slower than that of the rest of the system.222

Nonetheless, it is not clear how time-varying inputs Ii(t) would affect the behavior of223

our system. We conjecture that the thresholds θi(t) would produce a phenomenon akin224

to full sensory adaptation[37, 38]. If so, for short time scales, our homeostatic networks225

would respond to the derivatives of the external signal, as opposed to signal intensity, which226

could lead to novel computational properties. This means that the results of Kinouchi and227

Copelli [39] on optimization of dynamic range in critical networks would be challenged. This228

important issue will be studied in a future extended paper.229
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