Whereas the 1st Piola–Kirchhoff stress relates forces in the current configuration to areas in the reference configuration, the 2nd Piola–Kirchhoff stress tensor \boldsymbol{S} relates forces in the reference configuration to areas in the reference configuration. The force in the reference configuration is obtained via a mapping that preserves the relative relationship between the force direction and the area normal in the current configuration. : \boldsymbol{S} = J~\boldsymbol{F}^{-1}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T} ~. In [[index notation]] with respect to an orthonormal basis, :S_{IL}=J~F^{-1}_{Ik}~F^{-1}_{Lm}~\sigma_{km} = J~\cfrac{\partial X_I}{\partial x_k}~\cfrac{\partial X_L}{\partial x_m}~\sigma_{km} \!\,\! This tensor is symmetric. If the material rotates without a change in stress state (rigid rotation), the components of the 2nd Piola–Kirchhoff stress tensor remain constant, irrespective of material orientation. The 2nd Piola–Kirchhoff stress tensor is energy conjugate to the [[Finite strain theory#Finite strain tensors|Green–Lagrange finite strain tensor]]. -------------------------------------------------- If we pull back d\mathbf{f} to the reference configuration, we have : d\mathbf{f}_0 = \boldsymbol{F}^{-1}\cdot d\mathbf{f} or, : d\mathbf{f}_0 = \boldsymbol{F}^{-1}\cdot \boldsymbol{N}^T\cdot\mathbf{n}_0~d\Gamma_0 = \boldsymbol{F}^{-1}\cdot \mathbf{t}_0~d\Gamma_0 The PK2 stress (\boldsymbol{S}) is symmetric and is defined via the relation : d\mathbf{f}_0 = \boldsymbol{S}^T\cdot\mathbf{n}_0~d\Gamma_0 = \boldsymbol{F}^{-1}\cdot \mathbf{t}_0~d\Gamma_0 Therefore, : \boldsymbol{S}^T\cdot\mathbf{n}_0 = \boldsymbol{F}^{-1}\cdot\mathbf{t}_0