
A Bucket Grid Structure to Speed Up Table Lookup in Gauge-Based
Photometric Stereo

Suppressed to avoid author identification

Abstract

In this paper, we show how to speed up the table lookup
step in gauge-based multi-image photometric stereo. In that
step, one must find a pixel of agauge object, of known shape
and color, whose appearance underm different illumina-
tion fields is similar to that of a given scene pixel. This
search reduces to finding the closest match to a givenm-
vector in a table with a thousand or morem-vectors. Our
speed-up method explots the fact that the table is in fact
a fairly flat two-dimensional manifold inm-dimensional
space, so that the search can be efficiently solved with a
two-dimensional bucket grid structure.

1. Introduction

1.1. Variable-lighting photometric stereo

In variable-lighting photometric stereo(VLPS), the in-
put data is a list ofm ≥ 3 monochromatic digital photos
S1, .. Sm of some optically passive scene, all taken with dif-
ferent lighting conditions but with the same pose and view-
point. As shown by R. J. Woodham in 1980 [8], by ana-
lyzing them pixel intensitiesSi[p] at any image pointp,
one can recover the unit vectorŝ[p] that is perpendicular to
surface element which is visible atp. This problem has at-
tracted a lot of attention in recent years [3, 5, 7, 11, 2, 10].

To perform the above analysis, one must have enough
information about thebidirectional radiance distribution
function(BRDF) of the surface, and about the light fieldΦi

in each imageSi. The BRDF of the scene’s surface at point
p of the image is a functionσ[p](n̂, û, v̂) that gives the ap-
parent brightness of the surface when oriented with normal
n̂, viewed from the direction̂v, and illuminated with uni-
directional light of unit intensity flowing in the direction
û. (Note that we include the geometric light spread factor
max {0,−û · n̂} in the BRDF itself.)

1.2. Gauge-based VLPS

In the gauge-basedvariant of VLPS, the BRDF infor-
mation is indirectly given bym imagesG1, .. Gm of a light
gauge, a sample object of known shape and color; where
each gauge imageGi is taken under the same lighting con-
ditions as the corresponding scene imageSi. (Depending on
the application, it may be convenient to include the gauge
object as part of the scene itself. In that case, eachGi will
be just a sub-image ofSi.)

In this paper, we assume that all imagesS1, .. Sm have
been geometrically corrected, trimmed, and aligned, so that
each pointp on their common domainS corresponds to the
same point on the scene’s visible surface. The same con-
dition is assumed for the gauge imagesG1, .. Gm, whose
common domain will be denoted byG. We also assume that
all pixel values are directly proportional to light intensity.

In its basic form, gauge-based VLPS is viable only if all
visible scene and gauge surfaces have the same finish ev-
erywhere, except for variations in intrinsic color. That is,
the BRDFσ[p] of the scene at each image pointp, and the
BRDF γ[q] of the gauge at any pointq, must be multiples
of some fixed BRDF̄β:

σ[p](n̂, û, v̂) = S∗[p] β̄(n̂, û, v̂)
γ[p](n̂, û, v̂) = G∗[p] β̄(n̂, û, v̂)

(1)

The constant factorsS∗[p] andG∗[q] in these formulas are
theintrinsic lightnessor albedoof the scene and gauge sur-
face, respectively, at those points. Observe that the gauge’s
albedoG∗[q] and normal direction̂g[q] must be known for
all q ∈ G; typically, one uses a spherical gauge with uni-
form albedo, preferably white (G∗[q] = 1 everywhere).

Another necessary condition for gauge-based VLPS is
that the BRDFβ̄ must be dominated by wide-angle scatter-
ing, with no mirror-like reflection or sharp glossy scatter-
ing. The standard example is the Lambertian BRDF

β̄(n̂, û, v̂) = max {0,−û · n̂} (2)

However, almost any BRDF̄β will do, as long as it doesn’t
have impulse-like components (sharp peaks or ridges).

We will also assume that the the images are taken under
nearly parallel projection and illuminated by distant light

1

sources, so that the viewing directionv̂ and the lighting con-
ditions are the same at every point ofS or G.

Gauge-based VLPS can be extended to multichannel
(e.g. RGB trichromatic) images, in which case one gets
a single normal mapn but a different albedo mapS∗

λ
[p]

for each spectral bandλ. These albedo maps then give
the illumination-independentintrinsic color of the scene at
each pixel.

1.3. Fundamental equations

The key idea of gauge-based VLPS is that a scene photo
Si or a gauge photoGi can be factored into the product of
two images: theintrinsic albedo map, S∗ or G∗, and alight-
ing factor mapthat depends only on the lighting conditions
Φi and the local orientation of the surface. Specifically,

Si[p] = S∗[p] Li(ŝ[p])
Gi[q] = G∗[q] Li(ĝ[q])

(3)

Here, eachLi is theshading functionimplied by the light-
ing field Φi and the BRDF̄β. It maps each unit vector̂n to
the apparent lightness of a white surface perpendicular ton̂,
and is given by the formula

Li(n̂) =

∫

S2

Φi(û)β̄(n̂, û, v̂) dû (4)

The factorΦi(û) is the intensity of the light flow that is in-
cident on the surface from direction̂u. The uniform light-
ing condition allows us to assume thatΦi(û) does not de-
pend on the position on the surface, but only on the light
directionû. Note that the value ofΦi(û) is irrelevant for di-
rectionsû that point outwards from the local surface, or for
points that are not on the surface; so it is indeed plausible
to have a single functionΦi for the whole scene, indepen-
dently of the local surface orientation. This lighting model
allows attached shadows, and is adequate for scenes con-
sisting of a single mostly convex object. The model cannot
account for projected shadows, radiosity effects, or sources
with uneven light distribution.

Note that, in this model, the intrinsic color mapsG∗ and
S∗ are distinct from each other, but are the same for alli;
whereas the shading functionsLi are different for eachi but
are the same forSi andGi.

If formulas (3) hold, then we can determine the normal
ŝ[p] at a pointp of the scene images by finding a point in the
gauge images that reacts in the same way asp to changes in
lighting directions, except for the albedosS∗[p] andG∗[q].
More precisely, we must findq ∈ G such that them-vectors

S[p] = (S1[p], S2[p], . . . , Sm[p])
G[q] = (G1[p], G2[p], . . . , Gm[p])

(5)

are multiples of each other. The vectorsS[p] andG[q] are
called theobservation vectors(OVs) of pointsp andq.

Having located the matching gauge pointq, we can re-
cover the normal vector̂s[p] and albedoS∗[p] of the scene
atp by the formulas

ŝ[p] = ĝ[q]

S∗[p] =
|S(p)|
|G(q)|G

∗(q)
(6)

This method will fail if there are two pointsq′, q′′ on the
gauge images which have different normals (ĝ[q′] 6= ĝ[q′])
but collinear OVs (G[q′] = αG[q′′] for some scalarα). To
avoid this problem, the number of imagesm must be at least
3, and the light fieldsΦ1, .. Φm must be sufficiently varied
to break any such ambiguities. We will assume that this con-
dition is satisfied in what follows.

1.4. The table-lookup step

The most time-consuming part of gauge-based VLPS is
locating the pointq ∈ G such thatS[p] is a multiple ofG[q].
If neither vector is zero, this is equivalent to matching the
signaturess[p] andg[q] defined by

s[p] =
S[p]

|S[p]| g[q] =
G[q]

|G[q]| (7)

Here|·| is any norm ofRm, e.g. the Euclidean norm

|X| =
√

∑

m

i=1
X2

i
(8)

Note that the positionq is not meaningful by itself; it is only
used to associate the signatureg[q] to the normal̂g[q] and to
the OV modulusG•[q] = |G[q]|. Therefore, we can replace
the gauge images by asignature table, an unordered set of
triplets

T = { (g[q], ĝ[q], G•[q]) : q ∈ G } (9)

The computation of̂s[p] then becomes aclosest-match table
look-up problem, where we look for the element(g, n̂, G•)
of the tableT that minimizes the distancedist(g, s[p]).

The brute-force solution to this problem would be to scan
the tableT, computingdist(g, s[p]) for each signatureg in
it, while keeping track of the closest-matching entry. How-
ever, in order to provide a good coverage of all possible nor-
mal directions, the tableT must have tens of thousands of
entries. Since the lookup must be repeated for each pixel
of the scene domainS, it may take tens of minutes to pro-
cess a single set of scene images with this method.

1.5. Previous work

A number of techniques have been proposed in the lit-
erature to speed up the table search step. In his pioneering
work, Woodham [9, 10] used a regularm-dimensional grid
spanning the hypercube[0, 1]m, with 2b cells along each
axis, for some bit countb. In the pre-processing phase, each

2

gauge observation vectorG[q] was quantized withb bits per
coordinate, yielding them-tuple of indices of some grid cell
where the associated normal vectorĝ[q] was stored. (Wood-
ham assumed uniform albedosS∗ = G∗, so there was no
reason to normalize the signatures.) In the lookup phase,
each scene OVS[p] was mapped to a table cell in the same
way, and the desired normalŝ[p] was recovered from the
grid. One obvious disadvantage of this method is the size
of the grid (2mb, which is about 250,000 form = 3 and
b = 6).

Several researchers have used generalm-dimensional
nearest-point algorithms for this purpose. Hertzmann and
Seitz [4] useapproximate nearest neighbour(ANN) of Arya
et al. [1]. Zhong and Little [11] use thelocally sensitive
hashingof Indyk and Motwani [6].

However, all the above methods have a common short-
coming: they consider the set of all gauge signatures
G = {g[q] : q ∈ G } to be a generic cloud of points scat-
tered in m-dimensional space, and therefore use gen-
eral m-dimensional nearest-neighbor search algorithms,
which are inherently expensive in space and/or time [6].

1.6. Shape of the signature table

The key observation for our improved method is that
the setG of all gauge signatures is essentially a two-
dimensional subset ofRm. Therefore, we can reduce the
problem to a two-dimensional nearest-point search, which
can be solved very efficiently by a two-dimensional bucket
grid scheme.

To understand the key observation above, note that, be-
cause of formulas (3) and (7), the normalized signatures
s[p] and g[q] can be expressed asl(ŝ[p]) and l(ĝ[q]), re-
spectively; wherel is thesignature function

l(n̂) =
L(n̂)

|L(hatn)| (10)

andL(n̂) = (L1(n̂), .. Lm(n̂)). Note that the functionl,
that maps surface normals to signatures, is defined only on
the hemisphereH of S2 consisting of the normal directions
that deviate less than 90 degrees from the viewing direc-
tion v̂. On the other hand, a good gauge object must provide
a fairly dense and uniform sampling ofH (which is why
spheres are normally used for that purpose). It follows that
the set of gauge signatures must be a fairly dense and uni-
form cover ofK = l(H), the range of the functionl.

Now, given our assumption that the gauge’s BRDFβ̄
lacks the sharp spikes of mirror-like reflection, the shad-
ing factorsLi(n̂) given by formula (4) are continuous func-
tions of the surface normal̂n. In fact,Li is typically fairly
smooth, with just a few broad and hardly-distinguishable
maxima. Observe, futhermore, that the gauge-based VLPS

problem is solvable if and only if the functionl(n̂) is invert-
ible, i.e. for every pointv of Sm−1 there is at most one di-
rection n̂ such thatl(n̂) = v. If this condition holds, the
rangeK of l is an embedding of the hemisphereH into
S

m−1. Finally, since the signatures are contained in the pos-
itive orthant ofRm, the width ofK, as seen from the origin
of Rm, is at most 90 degrees.

From these considerations, we expect (and experience
confirms) that the rangeK of l is a relatively flat and disk-
like patch of a 2-dimensional manifold (surface) immersed
in Sm−1; and that the normalized gauge signaturesG must
be distributed overK with fairly uniform density.

1.7. The 2D bucketing scheme

In our method, the signature tableT is pre-processed as
follows. We first compute the centroidb of the signature set
G, and find the unit vectors vectorsu,v ∈ Rm that define
the principal axes of the point cloudG. These vectors are
found by computing them×m coordinate moment matrix
M of the displacementsgk−b, and taking the eigenvectors
associated to its two largest eigenvalues. The pointb and
the vectorsu,v define a two-dimensional affine subspace
P of Rm, thesignature projection plane, which is roughly
coplanar with the setG. The orthogonal projection ontoP
of a given normalized signatureg will be denoted by↓g.

Next, we choose a regular grid ofN ×N square cells on
the projection planeP . This grid is centered on the pointb,
has its sides parallel to the vectorsu andv, and is barely
large enough to contain the projection↓g of any normal-
ized signatureg in T. More precisely, the grid side is2R,
where

R = ε+max{|(g − b) · u| , |(g− b) · v| : g ∈ G} (11)

for some small safety marginε.

Having chosen the grid, we build, for each cellC[i, j], a
linkedbucket listT [i, j] of all table entries(g, n̂, G•) whose
signaturesg project onto that cell. We also compute the cor-
respondingbucket meanµ[i, j], defined as the barycenter
of all signaturesg in the listT [i, j]; and thebucket radius
ρ[i, j], defined as the the maximum Euclidean distance from
µ[i, j] to any signatureg in that list. See figure 1.

Note that the two-dimensional shape ofT means that the
entries inT [i, j] are fairly close to each other, even if their
mean distance from the planeP is large compared to the
cell size. This property remains true even whenm is greater
than 3.

3

b

u
v

P

Figure 1. The two-dimensional bucketing al-
gorithm, for m = 3, showing some signatures
in G (small circles), a bucket list T [i, j] (small
gray circles), and the enclosing sphere (dot-
ted circle) defined by the bucket’s centroid
µ[i, j] and radius ρ[i, j].

Once the bucket grid has been constructed, the scene signa-
turess[p] are looked up with algorithm 1 below. Its steps are
explained in sections 1.8 through 1.11.

Procedure 1 (Table lookup) Given a signatures, finds the
entry tmin∈ T whose signaturet is most similars.

1. i← ⌊N((g − b) · u + R)/(2R)⌋;
2. j ← ⌊N((g − b) · v + R)/(2R)⌋;
3. dmin← +∞;

4. For each pair(r, s) in ∆, in order, do

4.1. If dmin≤ δ|:|(r, s)|:|, return tmin.

4.2. (i′, j′)← (i, j) + (r, s);

4.3. If 0 ≤ i′ < N and0 ≤ j′ < N , then

4.3.1. For eacht = (g, n̂, G•) in T [i′, j′], do

4.3.1.1. If dmin≤ dist(s, µ[i′, j′])− ρ[i′, j′],
finish step 4.3.1;

4.3.1.2. setd← dist(s,g);

4.3.1.3. Ifd < dmin, set dmin← d and tmin← t.

5. Return tmin.

1.8. Bucket grid searching

In order to locate the entry closest to a given normalized
signatures, we compute the indices(i, j) = h(s) of the cell
that contains its projection↓ s. We then search for the en-
try t whose signaturet is closest tos in the listT [i, j], and
then, if necessary, in nearby bucketsT [i′, j′], in some ap-
propriate order. Note that some buckets may be empty, and
the best match to the querys may not be in bucketT [i, j],
even if that bucket is non-empty.

The bucket parametersµ[i, j] and ρ[i, j] allow us to
quickly skip over buckets that cannot possibly contain a bet-
ter match to the query signatures. More precisely, we can
give up the search in a bucketT [i′, j′] as soon as we can
guarantee that the query signatures is closer to the best
matcht found so far than to any entry in that bucket. By
the triangle inequality, this is ensured when

dist(s, t) ≤ dist(s, µ[i′, j′])− ρ[i′, j′] (12)

We will call condition (12) thebucket truncation criterion.

1.9. Precomputed search order

The bucket truncation criterion will often save us from
looking at any entries of a bucketT [i′, j′]. However, if we
were to examine the buckets in arbitrary order, we would
have to check allN2 buckets, and we would have to evalu-
ate condition (12) for all of them.

To reduce this cost, we search the bucketsT [i′, j′] in a
specific order, starting with the hashed bucketT [i, j] and
then moving gradually away from it. We are then able to de-
termine when the best-match signaturet has been found af-
ter scanning onlya fraction of the bucket array.

More precisely, consider two signaturess′ and s′′ that
project orthogonally toP into cellsC[i′, j′] andC[i′′, j′′],
respectively. It is easy to see that

dist(s′, s′′) ≥ dist(C[i′, j′], C[i′′, j′′]) (13)

In this formula,dist(C[i′, j′], C[i′′, j′′]) is the minimum
distance between the two cells, seen as subsets ofP . This
distance is

dist(C[i′, j′], C[i′′, j′′]) = δ|:|(i′ − i′′, j′ − j′′)|:| (14)

whereδ = 2R/N is the grid mesh size, and

|:|(r, s)|:| =
√

(max {0, |r| − 1})2 + (max {0, |s| − 1})2
(15)

Note that|:|(r, s)|:| is a bit smaller than the Euclidean norm
|(r, s)| =

√
r2 + s2. As part of the table preprocess-

ing, we precompute an ordered list∆ of all pairs(r, s) in
{−N + 1.. N − 1} × {−N + 1..N − 1}, sorted by in-
creasing value of|:|(r, s)|:| (and breaking ties by|(r, s)|).
For each query signatures, we take each displace-
ment (r, s) from the list ∆, in that order, and enumer-
ate the bucketT [i′, j′] where (i′, j′) = (i, j) + (r, s)
(provided that i′ and j′ lie in {0, ..N − 1}). See fig-
ure 2.

4

(a)

8 5 4 4 4 5 8

5 4 1 1 1 4 5

4 1 0 0 0 1 4

4 1 0 0 0 1 4

4 1 0 0 0 1 4

5 4 1 1 1 4 5

8 5 4 4 4 5 8

(b)

45 41 33 27 34 42 46

37 21 17 11 18 22 38

29 13 05 03 06 14 30

25 09 01 00 02 10 26

31 15 07 04 08 16 32

39 23 19 12 20 24 40

47 43 35 28 36 44 48

Figure 2. (a) The squared cell distance func-
tion |:|∆|:|2, and (b) the bucket scan order, for
the 7 × 7 cells nearest to the starting cell (at
center).

1.10. Early termination

A bucket [i′, j′] can be ignored if the cell distance
bound (13) excludes the possibility that a better match can
be found within it; that is, if

dist(s, t) ≤ δ|:|∆|:| (16)

Note that condition (16) is weaker than condition (12); how-
ever, if condition (16) fails, we can stop the search and re-
turnt, since that condition will fail for any subsequent∆.

1.11. Analysis

The average computation cost of algorithm 1 is roughly
Bb + Dd + O(1), whereb is the average number of buck-
ets examined per lookup (step 4.1),d is the average num-
ber of table entries tested (step 4.3.1.2), andB, D are the
costs associated to those two operations.

In the extreme case whenN = 1, we will haveb = 1 and
d = |T| (which is equivalent to a linear search ofT). As N
increases,d will usually decrease towards 1, because the
test of step 4.1 will get satisfied before the procedure finds
the second non-empty bucket. At the same time,b will in-
crease immediately to about 10, because|:|(r, s)|:| is zero for
the first nine pairs(r, s) in the list∆. Thereafter,b wil grow
slowly in proportion toN2, because the procedure will have
to skip Increasingly more empty buckets before finding the
first non-empty one.

This analysis indicates that there will be an optimal value
of N which minimizes the running time. The optimum de-
pends on the cost ratioB/D. In our tests, we found that the
total time was minimized whenN was about2

√

|T| (an av-
erage of 0.25 entries per bucket).

2. Experiments

To measure the actual performance of our bucketing
scheme, we used synthetic images produced by standard
ray-tracing. The scene consisted of a hemispherical smiley-
like mask with convex eyes and concave mouth (both in
low relief in order to avoid projected shadows), with var-
ious shades of matte gray finish. See figure 3(a). The gauge
object was a sphere with white Lambertian finish; see fig-
ure 3(b).

(a) (b) (c)

Figure 3. Scene (a) and gauge (b) used in the
tests. Figure (c) is a 3D view of the height
map obtained by integrating the scene slopes
computed by the method described in this
paper.

In all tests, the lighting setup was a single point source
located very far from the scene. The camera field-of-view
was narrowed to provide near-parallel image projection. In
the tests, we varied the camera-to-light angleθ (either 10 or
45 degrees), the number of input imagesm (either 3, 5, or
30). The signature table size|T|was kept fixed at 10219. For
each combination of parameters, we ran our bucket-based
algorithm on the scene images with grid sizesN = 202
andN = 143, corresponding to average entry-to-bucket ra-
tios κ = |T| /N2 of 25% and 50%. We also processed the
same images withN = 1, which is essentailly equivalent to
the brute-force nearest-match algorithm.

Table 1 shows various average cost metrics for each ta-
ble look-up operation: the numberb of bucketsT [i′, j′] that
were examined, the numberd of table entries that were ac-
tually tested (i.e., the number of evaluations ofdist(s,g)),
and the look-up timet in microsseconds. The tests were run
on a standard PC with a 3GHz clock. The absolute timet
obviously depends on the implementation, so only the for
the various configurations.

5

θ m N κ t d b

10
◦ 3 202 0.25 20.5 6.8 12.4

10
◦ 3 143 0.50 22.9 11.8 11.2

10
◦ 3 1 — 3987.5 10219.0 1.0

45
◦ 3 202 0.25 18.0 3.5 10.0

45
◦ 3 143 0.50 18.3 6.4 10.0

45
◦ 3 1 — 3985.3 10219.0 1.0

10
◦ 5 202 0.25 22.3 6.4 11.7

10
◦ 5 143 0.50 25.1 11.1 10.9

10
◦ 5 1 — 5620.1 10219.0 1.0

45
◦ 5 202 0.25 29.0 10.5 45.2

45
◦ 5 143 0.50 28.7 12.2 28.9

45
◦ 5 1 — 5606.3 10219.0 1.0

10
◦ 30 202 0.25 58.4 9.7 11.4

10
◦ 30 143 0.50 76.4 16.7 10.8

10
◦ 30 1 — 26637.9 10219.0 1.0

45
◦ 30 202 0.25 74.9 12.5 51.2

45
◦ 30 143 0.50 78.9 14.1 32.3

45
◦ 30 1 — 26605.5 10219.0 1.0

Table 1. Average costs and operation counts
of the table look-up procedure for various val-
ues of θ, m, and N . The entries with N =
1 represent sequential table search (without
any bucket-grid speed-up).

Figures 4 and 5 show the sizes of the bucket listsT [i, j]
for two different values ofm (5, and 30) and two different
light arrangements (θ = 10◦ andθ = 45◦). In both cases
we hadN = 202 and |T| = 10219, corresponding to an
average entry-to-bucket ratioκ = 25%. Note that, in most
cases, the signatures are distributed fairly evenly over a sub-
stantial fraction of the grid.

3. Conclusions and future work

Our bucket-grid scheme provides fast and accurate best-
match table search, even for very large values ofm. Our
two-dimensional grid is more space-efficient than the gen-
eralm-dimensional nearst-neighbor data structures used bu
other authors. It is also considerably faster than those meth-
ods. Thanks to the optimal alignment of the grid, we ob-
tain compact spherical enclosures for each bucket, which
allow us to eliminate an entire bucket with a single distance
comparison. Moreover, the 2D structure means that we need
to scan only a few buckets (10 or so) around the hashed
cell. Moerover, unlike previous grid schemes, our method
is exact—it always yields the best matching entry in the ta-
ble, and not merely a close approximation.

We have restricted the input to monochromatic images
only to simplify the exposition; but our 2D bucket-grid
method works equally well for color images. If each image
hasc spectral bands (color channels), thecolor observation

vectorsS[p] andG[q] are the concatenation ofc monochro-
matic OVs withm components each. As before, in order to
recover the scene normalŝ[p] at a pointp, we look for for
a gauge pointq such that the color signaturess[p] andg[q]
match; except that the color signatures are obtained from
the color OVs by normalizing each monochromatic OV sep-
arately. The color signatures are then points of(Sm)c; but
they are still a 2-dimensional manifold in that space, and
therefore can be organized by a single 2-D bucket grid.

 0

 50

 100

 150

 200

 250 0

 50

 100

 150

 200

 250

 0

 5

 10

 15

 20

 25

Figure 4. Bucket list lengths for m = 5 and
θ = 45◦. The longest bucket has 8 entries.

 0

 50

 100

 150

 200

 250 0

 50

 100

 150

 200

 250

 0

 2

 4

 6

 8

 10

 12

 14

 16

Figure 5. Bucket list lengths for m = 30 and
θ = 10◦. The longest bucket has 5 entries.

6

Acknowledgements

This project was partly supported by research grants
from CNPq and CAPES.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate neareast
neighbor searching in fixed dimensions.Journal of the As-
sociation of Computing Machinery, 45(6):891–923, 1998.

[2] S. Barsky and M. Petrou. The 4-source photometric stereo
technique for three-dimensional surfaces in presence of high-
lights and shadows.IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(10):1239–1252, Oct. 2003.

[3] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo
with general unknown lighting. International Journal of
Computer Vision, 72(3):239–257, 2007.

[4] A. Hertzmann and S. M. Seitz. Shape and materials by ex-
ample: A photometric stereo approach. InProceedings IEEE
CVPR 2003, volume 1, pages 533–540, June 2003.

[5] A. Hertzmann and S. M. Seitz. Example-based photometric
stereo: Shape reconstruction with general, varying BRDFs.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(8):1254–1264, Aug. 2005.

[6] P. Indyk and R. Motwani. Approximate nearest neighbour:
Towards removing the curse of dimensinality. InProceed-
ings of the 13th Annual ACM Symposium on Theory of Com-
puting (STOC’98), pages 604–613, 1998.

[7] L. Shen, T. Machida, and H. Takemura. Efficient photometric
stereo for three-dimensional surfaces with unknown BRDF.
In Proceedings of the 5th International Conference on 3-D
Digital Imaginga nd Modeling (3DIM’05), pages ???–???,
2005.

[8] R. J. Woodham. Photometric method for determining su-
face orientation from multiple images.Optical Engineering,
19(1):139–144, 1980.

[9] R. J. Woodham. Determining surface curvature with pho-
tometric stereo. InProceedings of the 1989 IEEE Interna-
tional Conference on Robotics and Automation, volume 1,
pages 36–42, May 1989.

[10] R. J. Woodham. Gradient and curvature from the pho-
tometric stereo method, including local confidence estima-
tion. Journal of the Optical Society of America, Series A,
11(11):3050–3068, 1994.

[11] L. Zhong and J. J. Little. Photometric stereo via locality sen-
sitive high-dimension hashing. InProceedings of the Sec-
ond Canadian Conference on Computer and Robot Vision
(CRV’05), pages ???–???+7, 2005.

7

