A Bucket Grid Structureto Speed Up Table L ookup in Gauge-Based
Photometric Stereo
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Abstract 1.2. Gauge-based VLPS

In the gauge-basedariant of VLPS, the BRDF infor-

In this paper, we show how to speed up the table lookupmation is indirectly given byn imagesG1, .. G,,, of alight
step in gauge-based multi-image photometric stereo. It tha gauge a sample object of known shape and color; where
step, one must find a pixel ofauge objecbf known shape  each gauge imag@; is taken under the same lighting con-
and color, whose appearance under different illumina-  ditions as the corresponding scene imaggDepending on
tion fields is similar to that of a given scene pixel. This the application, it may be convenient to include the gauge
search reduces to finding the closest match to a given  object as part of the scene itself. In that case, &zchill
vector in a table with a thousand or more-vectors. Our be just a sub-image &f;.)
speed-up method explots the fact that the table is in fact |n this paper, we assume that all imag®s.. S,, have
a fairly flat two-dimensional manifold imn-dimensional been geometrically corrected, trimmed, and aligned, sb tha
space, so that the search can be efficiently solved with aeach poinp on their common domais corresponds to the
two-dimensional bucket grid structure. same point on the scene’s visible surface. The same con-

dition is assumed for the gauge imaggs, .. G,,,, whose

common domain will be denoted Iy We also assume that

all pixel values are directly proportional to light intetysi

In its basic form, gauge-based VLPS is viable only if all

1. Introduction visible scene and gauge'sgrfacgs ha\{e t'he same finish ev-
erywhere, except for variations in intrinsic color. That is
the BRDFo[p] of the scene at each image pojntand the
BRDF v][g] of the gauge at any poimt must be multiples
of some fixed BRDF3:

1.1. Variable-lighting photometric stereo

In variable-lighting photometric stere(/LPS), the in-

put data is a list ofn > 3 monochromatic digital photos RN om0 (1)

51, ...S,, of some optically passive scene, all taken with dif- Ylpl(R, @, 0) = G*[p] A(7, G, 0)

ferent lighting conditions but with the same pose and view- The constant factor§*[p] andG*[g] in these formulas are
point. As shown by R. J. Woodham in 1980 [8], by ana- theintrinsic lightnessor albedoof the scene and gauge sur-
lyzing the m pixel intensitiesS;[p] at any image poinp, face, respectively, at those points. Observe that the gauge
one can recover the unit vectéfp] that is perpendicularto  albedoG*[¢] and normal directiorg[q] must be known for
surface element which is visible at This problem has at-  all ¢ € G; typically, one uses a spherical gauge with uni-
tracted a lot of attention in recent years [3, 5, 7, 11, 2, 10]. form albedo, preferably white{*[¢q] = 1 everywhere).

To perform the above analysis, one must have enough Another necessary condition for gauge-based VLPS is
information about thebidirectional radiance distribution  that the BRDF3 must be dominated by wide-angle scatter-
function(BRDF) of the surface, and about the light fidld ~ ing, with no mirror-like reflection or sharp glossy scatter-
in each images;. The BRDF of the scene’s surface at point ing. The standard example is the Lambertian BRDF
p of the image is a function[p|(n, @, ©) that gives the ap- Ala e AN A
parent brightness of the su#a]ée whe21 oriented with normal Bl i, 0) = max{0, =i - 7} @

f, viewed from the directiord, and illuminated with uni-  However, almost any BRDB will do, as long as it doesn't
directional light of unit intensity flowing in the direction have impulse-like components (sharp peaks or ridges).

u. (Note that we include the geometric light spread factor ~ We will also assume that the the images are taken under
max {0, —4 - n} in the BRDF itself.) nearly parallel projection and illuminated by distant kigh
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sources, so that the viewing directidand the lighting con-
ditions are the same at every point®br G.

Having located the matching gauge paintwe can re-
cover the normal vectoi[p] and albedd5™ [p] of the scene

Gauge-based VLPS can be extended to multichannelatp by the formulas

(e.g. RGB trichromatic) images, in which case one gets

a single normal mam but a different albedo mas5|(p]
for each spectral band. These albedo maps then give
the illumination-independeimtrinsic color of the scene at
each pixel.

1.3. Fundamental equations

The key idea of gauge-based VLPS is that a scene phot

S; or a gauge phot6r; can be factored into the product of
two images: théntrinsic albedo mapS* or G*, and dight-
ing factor mapthat depends only on the lighting conditions
®,; and the local orientation of the surface. Specifically,

S;[p] S*[p] Li(8[p])
Gilq] G*[q) Li(glq])

Here, eachl; is theshading functiorimplied by the light-
ing field ®; and the BRDF53. It maps each unit vectar to
the apparent lightness of a white surface perpendiculay to
and is given by the formula

3)

L) = [ @:(@)5(i,,0)da @
S2

The factor®; (i) is the intensity of the light flow that is in-

cident on the surface from directian The uniform light-

ing condition allows us to assume thb{(i) does not de-

sl = 4gld]
R L 16)] (6)

This method will fail if there are two pointg’, ¢’ on the
gauge images which have different normalg/{ # 3[¢’])
but collinear OVs G[¢'] = aG[q"] for some scalaw). To

fvoid this problem, the number of imagesmust be at least

3, and the light field®, .. ®,,, must be sufficiently varied
to break any such ambiguities. We will assume that this con-
dition is satisfied in what follows.

1.4. Thetable-lookup step

The most time-consuming part of gauge-based VLPS is
locating the poing € G such thaS[p] is a multiple ofG[q].
If neither vector is zero, this is equivalent to matching the
signaturess|p| andg[q] defined by

Sl Cld ,
s[p] Sl gld] Gl ()

Here|-| is any norm ofR™, e.g. the Euclidean norm
IX| = Vv 221 Xi,2 8)

Note that the position is not meaningful by itself; it is only

pend on the position on the surface, but only on the light used to associate the signatgfe| to the normal[q] and to

direction. Note that the value ob; () is irrelevant for di-
rectionsu that point outwards from the local surface, or for

the OV modulus>*[¢q] = |G[q]|. Therefore, we can replace
the gauge images bysagnature tablean unordered set of

points that are not on the surface; so it is indeed plausibletriplets

to have a single functiom®; for the whole scene, indepen-

T ={(glal, glal.G*la) 9 € G} ©)

dently of the local surface orientation. This lighting mbde ¢ computation of[p] then becomesaosest-match table
allows attached shadows, and is adequate for scenes Co%ok-up problemwhere we look for the elemefg, i1, G*)

sisting of a single mostly convex object. The model cannot f ihe tableT that minimizes the distanaist(

account for projected shadows, radiosity effects, or semrc
with uneven light distribution.

Note that, in this model, the intrinsic color ma@$ and
S* are distinct from each other, but are the same fog;all
whereas the shading functiohgare different for eachbut
are the same faf; andG;.

If formulas (3) hold, then we can determine the normal
3[p] at a poinp of the scene images by finding a point in the
gauge images that reacts in the same wagytaschanges in
lighting directions, except for the albed§$[p] andG*[q].
More precisely, we must fing € G such that then-vectors

S[p] (Sl[p]vSQ[p]’7Sm[p])
G[Q] (Gl[p]vG2[p]a’Gm[p])

are multiples of each other. The vect®p] andG|q] are
called theobservation vectorfOVs) of pointsp andg.

(®)

g,s[p)).
The brute-force solution to this problem would be to scan

the tableT, computingdist(g, s[p]) for each signaturg in

it, while keeping track of the closest-matching entry. How-
ever, in order to provide a good coverage of all possible nor-
mal directions, the tabl& must have tens of thousands of
entries. Since the lookup must be repeated for each pixel
of the scene domaif, it may take tens of minutes to pro-
cess a single set of scene images with this method.

1.5. Previouswork

A number of techniques have been proposed in the lit-
erature to speed up the table search step. In his pioneering
work, Woodham [9, 10] used a regular~-dimensional grid
spanning the hypercubj®, 1]™, with 2° cells along each
axis, for some bit courit. In the pre-processing phase, each



gauge observation vect@¥[q] was quantized with bits per problem is solvable if and only if the functid(w) is invert-
coordinate, yielding the:-tuple of indices of some grid cell  ible, i.e. for every point of S™~! there is at most one di-
where the associated normal vecj@y] was stored. (Wood-  rection# such thatl(7) = v. If this condition holds, the
ham assumed uniform albed8$ = G*, so there was no rangeK of 1is an embedding of the hemisphekg into
reason to normalize the signatures.) In the lookup phaseS™~!. Finally, since the signatures are contained in the pos-
each scene O[p] was mapped to a table cell in the same itive orthant ofR™, the width of X', as seen from the origin
way, and the desired normalp] was recovered from the of R™, is at most 90 degrees.

grid. One obvious disadvantage of this method is the size

i mb H H _
of the grid @, which is about 250,000 fom = 3 and confirms) that the rang& of 1 is a relatively flat and disk-

b= 6). . . like patch of a 2-dimensional manifold (surface) immersed
Several researchers have used genseralimensional in S™~1: and that the normalized gauge signatufesust

nearest-point algorithms for this purpose. Hertzmann andpe gistriputed ovek with fairly uniform density.
Seitz [4] useapproximate nearest neighbdNN) of Arya

et al. [1]. Zhong and Little [11] use thiecally sensitive
hashingof Indyk and Motwani [6].

However, all the above methods have a common short-
coming: they consider the set of all gauge signatures
G = {glq] : ¢ € G} to be a generic cloud of points scat-
tered in m-dimensional space, and therefore use gen- |n our method, the signature tableis pre-processed as
eral m-dimensional nearest-neighbor search algorithms, follows. We first compute the centrolsiof the signature set
which are inherently expensive in space and/ortime [6]. G, and find the unit vectors vectots v € R™ that define
the principal axes of the point cloud. These vectors are
found by computing then x m coordinate moment matrix
M of the displacements;, — b, and taking the eigenvectors

The key observation for our improved method is that associated 1o its tV_VO largest e_igenvglues. The pbiand
the setG of all gauge signatures is essentially a two- the vectorsu, v define a two-dimensional affine subspace

dimensional subset @&&™. Therefore, we can reduce the  ©f R™, thesignature projection planavhich is roughly
problem to a two-dimensional nearest-point search, which ¢0Planar with the sek. The orthogonal projection onts
can be solved very efficiently by a two-dimensional bucket ©f @ 9iven normalized signatugewill be denoted by, g.
grid scheme. Next, we choose a regular grid 8f x N square cells on
To understand the key observation above, note that, be-the projection plané®. This grid is centered on the poibt
cause of formulas (3) and (7), the normalized signatureshas its sides parallel to the vectarsandv, and is barely

From these considerations, we expect (and experience

1.7. The2D bucketing scheme

1.6. Shapeof the signaturetable

s[p] and g[q] can be expressed a&s[p]) and1(j[q]), re- large enough to contain the projectigrg of any normal-
spectively; wheré is thesignature function ized signatureg in T. More precisely, the grid side &R,
where
L(n)

I(R) = ———— (10)
[L(hatn)] R=c+max{|(g—b)-ul,|(g—b)-v|:geG} (11)

andL(n) = (L1(n),.. Ly, (n)). Note that the function,
that maps surface normals to signatures, is defined only orgg, some small safety margin
the hemispherél of S? consisting of the normal directions
that deviate less than 90 degrees from the viewing direc-
tion . On the other hand, a good gauge object must provide
a fairly dense and uniform sampling &f (which is why
spheres are normally used for that purpose). It follows tha
the set of gauge signatures must be a fairly dense and uni
form cover of K = 1(H), the range of the functioh

Now, given our assumption that the gauge's BRBF
lacks the sharp spikes of mirror-like reflection, the shad-  Note that the two-dimensional shapelbieans that the
ing factorsL;(7) given by formula (4) are continuous func-  entries inT'[¢, j] are fairly close to each other, even if their
tions of the surface normal. In fact, L; is typically fairly mean distance from the plare is large compared to the
smooth, with just a few broad and hardly-distinguishable cell size. This property remains true even wheiis greater
maxima. Observe, futhermore, that the gauge-based VLPShan 3.

Having chosen the grid, we build, for each a@lli, j], a
linkedbucket listT'[z, 7] of all table entriegg, 7, G*) whose
signatureg project onto that cell. We also compute the cor-
t respondingoucket mearnu[i, j], defined as the barycenter
of all signatureg in the listT'[i, j]; and thebucket radius
pli, 7], defined as the the maximum Euclidean distance from
uli, 7] to any signature in that list. See figure 1.



The bucket parameterg|i, j] and pli,j] allow us to
quickly skip over buckets that cannot possibly contain a bet
ter match to the query signatuse More precisely, we can
give up the search in a buck&li’, j'] as soon as we can
guarantee that the query signatwés closer to the best
matcht found so far than to any entry in that bucket. By
the triangle inequality, this is ensured when

dist(s, t) < dist(s, u[i’, 5']) — pli’, 7] (12)

We will call condition (12) thébucket truncation criterion

Figure 1. The two-dimensional bucketing al-
gorithm, for m = 3, showing some signatures 1.9. Precomputed search order
in G (small circles), a bucket list  T[i, 5] (small
gray circles), and the enclosing sphere (dot-
ted circle) defined by the bucket’s centroid
wli, 5] and radius  p[i, j].

The bucket truncation criterion will often save us from
looking at any entries of a buck&ti’, j']. However, if we
were to examine the buckets in arbitrary order, we would
have to check alN? buckets, and we would have to evalu-
ate condition (12) for all of them.

Once the bucket grid has been constructed, the scene signa- To reduce this cost, we search the buckgts, ;'] in a
turess[p] are looked up with algorithm 1 below. Its steps are Specific order, starting with the hashed buckgt, j] and
explained in sections 1.8 through 1.11. then moving gradually away from it. We are then able to de-
termine when the best-match signattiteas been found af-
ter scanning onlya fraction of the bucket array.

More precisely, consider two signaturg'sands” that

project orthogonally taP into cellsC[i’, j'] andC[i", 5],
respectively. It is easy to see that

Procedure 1 (Tablelookup) Given a signature, finds the
entry tmine T whose signature is most similars.

1.i— |[N({(g—b)-u+R)/(2R)];

2. j— [N((g—b)-v+R)/(2R)];

3. dmin«— +oc;

4. For each pair(r, s) in A, in order, do dist(s’,s") > dist(C[#', 5], C[i", 5"]) (13)
4.1. If dmin< 6}j(r, s)fj, return tmin.
4.2. (', 5") < (i,4) + (r, 8); In this formula, dist(C[¢’, j'], C[¢", j"]) is the minimum
43.1f0<i < Nand0 < j < N,then distance between the two cells, seen as subseks dhis
distance is

4.3.1. Foreacht = (g,n,G*)inT[i, 5], do
4.3.1.1. If dmin< dist(s, p[é’, 1) — pl¢’, 5’
finish step 4.3.1;
4.3.1.2. setl — dist(s, g);
4.3.1.3. Ifd < dmin, setdmin— d and tmin« ¢.
5. Return tmin.

dist(C[i', 5], C[i", 5"]) = o§(i" =", 5" = 5" )} (14)

whered = 2R/N is the grid mesh size, and

(. 5)§ = /Tmax {0, [r] — 1})2 + (max {0, [s] — 1})2
(15)
1.8. Bucket grid searching Note thatf(r, s)} is a bit smaller than the Euclidean norm
|(r,s)] = Vr?2+s2. As part of the table preprocess-
In order to locate the entry closest to a given normalized ing, we precompute an ordered liat of all pairs(r, s) in
signatures, we compute the indicds, j) = h(s) of the cell {-N+1.N -1} x {-N+1..N —1}, sorted by in-
that contains its projectiofis. We then search for the en- creasing value of(r, s)j (and breaking ties by(r, s)|).
try ¢ whose signature is closest tas in the list7T'[¢, j], and For each query signature, we take each displace-
then, if necessary, in nearby buck@&tg’, /], in some ap-  ment (r, s) from the list A, in that order, and enumer-

propriate order. Note that some buckets may be empty, andate the bucketl'[¢/, ;'] where (¢/,5') = (i,5) + (r,s)
the best match to the quesymay not be in buckeT[s, j], (provided that:’ and j’ lie in {0,..N —1}). See fig-
even if that bucket is non-empty. ure 2.



This analysis indicates that there will be an optimal value

8|54 ]|4]4]5]|8 of N which minimizes the running time. The optimum de-
S|4ttt 4s pends on the cost ratiB/D. In our tests, we found that the
411]10]0]011 114 total time was minimized whe was aboug./|T| (an av-
@ 4(1|0|0]|0 |14 erage of 0.25 entries per bucket).
4 11|10 |0]0]|1|4
514|111 |4]|5 )
s 15 212215 3 2. Experiments
45 |41 |33 |27 |34 |42 | 46 To measure the actual performance of our bucketing
37 |21 |17 |11 |18 [ 22 | 38 scheme, we used synthetic images produced by standard
59 113 105 103 106 |12 | 30 ray-tracing. The scene consisted of a hemispherical smiley
(b)[25 [08 [01 [00 |02 |10 |26 like mgsk_wnh convex eyes a_nd concave mouth .(both in
31115 To7 Toa 08 (16 (32 !ow relief in order to avoid _p_rolected s_hadows), with var-
ious shades of matte gray finish. See figure 3(a). The gauge
39123 119 112 120 | 24 | 40 object was a sphere with white Lambertian finish; see fig-
47 |43 |35 |28 | 36 |44 | 48 ure 3(b).

Figure 2. (a) The squared cell distance func-
tion JA}>, and (b) the bucket scan order, for

the 7 x 7 cells nearest to the starting cell (at ’
center).
N
(a) (b) ()
1.10. Early termination Figure 3. Scene (a) and gauge (b) used in the

g . . . tests. Figure (c) is a 3D view of the height
!/ !/

A bucket [/, j/] can be ignored if the cell distance map obtained by integrating the scene slopes

bound (13) excludes the possibility that a better match can computed by the method described in this

be found within it; that is, if paper.

dist(s, t) < S§A (16)

Note that condition (16) is weaker than condition (12); how-
ever, if condition (16) fails, we can stop the search and re-  |n all tests, the lighting setup was a single point source

turnt, since that condition will fail for any subsequeht located very far from the scene. The camera field-of-view
was narrowed to provide near-parallel image projection. In
1.11. Analysis the tests, we varied the camera-to-light arj{either 10 or

45 degrees), the number of input imagedeither 3, 5, or
The average computation cost of algorithm 1 is roughly 30). The signature table siZ&| was kept fixed at 10219. For
Bb + Dd + O(1), whereb is the average number of buck- €ach combination of parameters, we ran our bucket-based
ets examined per lookup (step 4.#)is the average num-  algorithm on the scene images with grid siz€s= 202
ber of table entries tested (step 4.3.1.2), &d are the andN = 143, corresponding to average entry-to-bucket ra-

costs associated to those two operations. tiosx = |T| /N? of 25% and 50%. We also processed the
In the extreme case whevi = 1, we will haveb = 1 and same images wittv = 1, which is essentailly equivalent to
d = |T| (which is equivalent to a linear search®f. As N the brute-force nearest-match algorithm.

increasesd will usually decrease towards 1, because the Table 1 shows various average cost metrics for each ta-
test of step 4.1 will get satisfied before the procedure finds ble look-up operation: the numbgof bucketsT'[i’, ;] that

the second non-empty bucket. At the same titnejll in- were examined, the numbérof table entries that were ac-
crease immediately to about 10, becaj(ges)| is zero for tually tested (i.e., the number of evaluationslft(s, g)),

the first nine pairgr, s) in the listA. Thereafter) wil grow and the look-up time in microsseconds. The tests were run
slowly in proportion toN2, because the procedure willhave on a standard PC with a 3GHz clock. The absolute ttme
to skip Increasingly more empty buckets before finding the obviously depends on the implementation, so only the for
first non-empty one. the various configurations.



vectorsS[p] andG|g| are the concatenation eimonochro-

102 72 2(JJ\; 0_;5 20.t5 6.% 12.2 matic OVs withm components each. As before, in order to
10° | 3] 143 050 229 11.8 | 11.2 recover the scene norm&p|] at a pointp, we look for for

10° | 3 1| — | 39875 102190| 1.0 a gauge poing such that the color signaturef| andg|q|

45° | 31202 0.25 18.0 35| 100 match; except that the color signatures are obtained from
45° | 3| 143 | 0.50 18.3 6.4 | 10.0 the color OVs by normalizing each monochromatic OV sep-
45° | 3 1| — | 3985.3| 10219.0| 1.0 arately. The color signatures are then pointg$t); but

10° | 5202 | 0.25 22.3 6.4 | 117 they are still a 2-dimensional manifold in that space, and
10° | 5| 143 | 0.50 25.1 111 109 therefore can be organized by a single 2-D bucket grid.

10° 5 1 — 5620.1| 10219.0| 1.0

45° 51202 | 0.25 29.0 10.5| 45.2

45° 5| 143 | 0.50 28.7 12.2 | 28.9

45° 5 1 — 5606.3 | 10219.0| 1.0

10° | 30 | 202 | 0.25 58.4 9.7 | 114

10° | 30 | 143 | 0.50 76.4 16.7 | 10.8

10° | 30 1 — | 26637.9| 10219.0| 1.0

45° | 30 | 202 | 0.25 74.9 125| 51.2

45° | 30 | 143 | 0.50 78.9 14.1| 32.3

45° | 30 1 — | 26605.5| 10219.0| 1.0

Table 1. Average costs and operation counts

of the table look-up procedure for various val-
ues of 6, m, and N. The entries with N =
1 represent sequential table search (without
any bucket-grid speed-up).

Figures 4 and 5 show the sizes of the bucket [i[35 j]
for two different values ofn (5, and 30) and two different
light arrangements(= 10° andd = 45°). In both cases

Figure 4. Bucket list lengths for m = 5 and
0 = 45°. The longest bucket has 8 entries.

we hadN = 202 and|T| = 10219, corresponding to an
average entry-to-bucket ratio = 25%. Note that, in most
cases, the signatures are distributed fairly evenly ovaba s
stantial fraction of the grid.

3. Conclusions and future work

Our bucket-grid scheme provides fast and accurate best-
match table search, even for very large valuesnofOur
two-dimensional grid is more space-efficient than the gen- .
eralm-dimensional nearst-neighbor data structures used bu:
other authors. Itis also considerably faster than thosémet
ods. Thanks to the optimal alignment of the grid, we ob-
tain compact spherical enclosures for each bucket, which
allow us to eliminate an entire bucket with a single distance |,
comparison. Moreover, the 2D structure means that we need
to scan only a few buckets (10 or so) around the hashed
cell. Moerover, unlike previous grid schemes, our method
is exact—it always yields the best matching entry in the ta-
ble, and not merely a close approximation.

We have restricted the input to monochromatic images  Figure 5. Bucket list lengths for m = 30 and
only to simplify the exposition; but our 2D bucket-grid 0 = 10°. The longest bucket has 5 entries.
method works equally well for color images. If each image

hasc spectral bands (color channels), ttedor observation
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