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Abstract

We describe a method for determining the surface nor-
mals (slopes) of a three-dimensional scene, from three or
more digital photographs taken from the same viewpoint un-
der different lighting conditions. We assume that the scene
contains alight gauge, a test object with known shape and
uniform color. The slope at a pointP of the image is found
by locating a pointq of the gauge that displays similar re-
action to the incident light in all images. The method can be
used also with simulated images of gauges (virtual gauges)
computed from a description of the relevant light fields. In
particular, we show how to fit a simple light field model to
a photo of an actual light gauge of known geometry. This
procedure can be used to extract the significant photomet-
ric information from the gauge’s photos, while discarding
small-scale noise that arises from dents or stains of the real
object.

1. Introduction

1.1. Variable-lighting photometric stereo

We describe a technique forvariable-lighting photomet-
ric stereo(VLPS), whose aim is to recover the surface nor-
mals (slopes) of a three-dimensional scene from a collec-
tion of 2D images taken with different lighting conditions
but with the same pose and viewpoint [12].

The main features of our method are (1) the use of light
gauges to assess the illumination field; (2) a procedure for
fitting a simple illumination model to images of real light
gauges; and (3) efficient inversion of the shading function
by a two-dimensional bucket grid.

This method can be applied to a variety of 3D recon-
struction problems in medicine, geology, engineering, vir-
tual reality, archeology, and many other areas. The nor-
mal computation procedure is fairly robust and can be ap-
plied to objects with Lambertian surfaces of arbitrary color
and texture. As a byproduct, the normal computation pro-
cedure also yields the “true color” (per-channel reflectance
coefficient) of the scene at every point of the image. The

method can be applied also to surfaces with arbitrary (non-
Lambertian) finish, provided that the relevant object has the
same uniform color and finish as the light gauge — that is,
the same bi-directional reflectance function (BRDF) every-
where. The method works even in the presence of proper
shadows (parts of the target surface which are turned away
from the light) and with extended sources and other com-
plex light fields, as long as the light field is uniform over the
scene. (Moderately non-uniform light fields could be han-
dled by including multiple light gauges in the scene and in-
terpolating their information.)

On the other hand, the normal computation method can-
not be directly applied to scenes with projected shadows;
but can detect them, and can still be used at every pixel
which is fully illuminated in at least three photos. The
method does not handle complex optical paths, such as light
incident atP that has been scattered, reflected, or refracted
by other parts of the scene.

Figure 1 (a,b,c) show a typical set of input images. The
round objects around the corners are light gauges.

(a) (b) (c)

Figure 1. Three images of the same scene un-
der different lighting conditions.

1.2. Related work

The principles of photometric stereo must have been
known at least since the establishment of photography and
the development of photometry, in the early 20th century.
Early articles assumed very simple settings: a smooth ob-
ject with uniform color and Lambertian finish, illuminated
by a single light source, distant and point-like (i.e. by a uni-
form and unidirectional light field). Their emphasis was on
methods that could extract depth information from a single
monochromatic image [7, 8, 15]
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The extraction of slope information from multiple im-
ages under different light fields, using light gauges, was pi-
oneered by Woodham in 1980 [14] and has been extensively
researched since then.

Woodham [16] also introduced the technique of thelook-
up table to search the best match between the brightness
vector of the sphere (gauge object) and the brightness vec-
tor of the scene object. The table size of look-up table is
exponential in number of images (the total size of the look-
up table is (2bd), which depends on the dimension d and
the number of bits b into which brightness is quantized).
When the number of registered images increase, we have
many brightness vector of the gauge object and the dimen-
sion look-up table has a prohibitive cost.

Osamu Ikeda [9] extended the three-image method to
color images, by using the HSV color space.Shadows and
highlights are a major nuisance in photometric stereo, since
pixel values carry no shape information wherever those fea-
tures are present. Barsky and Petrou [1] described a method
to detect such regions in a set of four or more images.

In 1999, Gionis, Indyk and Montwani [4] introduced a
locality sensitive hashing(LSH) to search similar images in
large databases. The basic idea of LSH is to hash high di-
mensional points so as to ensure that the probability of col-
lision is much higher for points that are close to each other
than for other are far apart.

In 2005, Hertzmann and Seitz [5, 6] presented a
stereo photometric approach, with the use of gauge ob-
jects, which enables reconstructing surfaces with arbitrary
BRDF (the method assumes orthography, distant light-
ing, no cast shadow, no inter-reflection, no subsurface
scattering, and no transparency).

Also in 2005, Zhong and Little [17] developed a method
that extend a work of Hertzmann and Seitz [5] (that sim-
plified the traditional shape from shading experiment avoid-
ing calibration). To speed up the search, the authors adapted
the LSH to search for matches in high dimension brightness
vector space. The computational cost isO(N), i.e. the LSH
hashing is constant per pixel, but there is a cost involved in
setting up the hash table, but the authors envision inspec-
tion applications where the cost can be absorbed at the be-
ginning an only inexpensive operations are done per object.

Recently, Basri, Jacobs and Kemelmacher [2] presented
a model-fitting method for photometric stereo under gener-
ally lighting condition. The method analyzes the gauge im-
ages to compute approximate models of the shading func-
tions using spherical harmonics of first or second order, and
then uses these models to extract the slope information from
the scene images.

2. Principles and notation

2.1. The scene images

The main input data for our method is a list ofm ≥ 3
digital photosS1, .. Sm of some optically passive scene, the
scene images, satisfying certain conditions. First, allm im-
ages must be taken with different lighting conditions, but
with the same pose and viewpoint; and must have been ge-
ometrically corrected and aligned, so that any pointP of
the scene projects to the same pixel positionp on all im-
ages. The photos must be effectively monochromatic, with
a linear color scale (i.e. pixel values must be proportionalto
physical light intensity). To simplify the exposition, we also
assume a simple orthogonal projection of the scene onto the
images, without perspective distortions.

Under these assumptions, we may assume that the rela-
tive intensitySi[p] at a pointp of photoSi depends only on
three attributes, associated to the portionP of the scene’s
surface that projects ontop:

• the surface’sintrinsic optical propertiesβ[p] (that de-
pend on its material and finish, such as emissivity, re-
flectance, polish, etc);

• its normal directionŝ[p] (the unit vector perpendicular
to the surface and directed away from the underlying
object); and

• the incident light fieldΦi (the intensity of light flow-
ing in each direction towards the surface) used in each
photo.

The intrinsic optical propertiesβ[p] can be modeled as
a bidirectional reflectance function, or BRDF — a function
β[p](n̂, û, v̂) that gives the apparent brightness of the sur-
face when oriented with normal̂n, viewed from the direc-
tion v, and illuminated with unidirectional light of unit in-
tensity flowing in the directionu. (Note that we consider the
geometric light spread factormax {0, û · n̂} included in the
BRDFβ).

The fundamental principle ofmultiple image photomet-
ric stereois that we can in principle recover the surface nor-
mal ŝ[p] at each image pointp from analysis of them pixel
intensitiesSi[p], provided that we have sufficient knowl-
edge of the BRDFβ and the light fieldsΦi.

2.2. The gauge images

In gauge-based VLPS, the relevant information about
β[p] and the flowsΦi are obtained indirectly from a set
G1, .. Gm of gauge images— photos of a referencelight
gauge objectof known shape. The gauge object must have
with the same BRDF as the scene’s surface atp, except for
a constant factor; and each photoGi is taken with the same
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camera position and under the same lighting conditions as
the corresponding scene photoSi.

It is often convenient to include the gauge object as part
of the scene, as in figure 1. In that case, the gauge photos
Gi are actually contained in the scene photosSi.

Each scene or gauge photo is assumed to be a real-valued
function of two real-valuedimage coordinates, defined in
someimage domain— a subset ofR2. The domains ofSi

andGi are denotedS andG, respectively.

2.3. Image formation model

Under the above assumptions, the BRDFβ[p] at every
point p of the scene images can be factored into the prod-
uct of some unknown scalarS∗[p] — the scene’sintrinsic
lightnessat p — and a single unknown BRDF̄β. Likewise,
the gauge’s BRDF at a pointq of the gauge images is as-
sumed to beG∗[q]β̄, for aknownintrinsic lightsG∗.

It follows from these assumptions that each scene or
gauge photo can be factored into the product of two images:
the intrinsic lightness map, S∗ or G∗, and a factor that de-
pends only on the lighting conditions and the local orienta-
tion of the surface. Specifically,

Si[p] = S∗[p] Li(ŝ[p])
Gi[q] = G∗[q] Li(ĝ[q])

(1)

for some set ofshading functionsL1, .. Lm. Here ŝ and ĝ
are thenormal mapsof the scene and gauge, respectively.
That is, ŝ[p] is the the unit-length vector perpendicular to
the visible portionP of the scene’s surface which projects
to pointp of the image; and̂g[q] is similarly defined for the
gauge object and the gauge images.

Note that, in this model, the intrinsic color mapsG∗ and
S∗ are distinct but the same for alli, whereas the shading
functionsLi, that map surface normals to relative appar-
ent intensities, are different for eachi but are shared by the
scene and gauge objects. The functionLi depends only on
the light fieldΦi and the common BRDF̄β, by the formula

Li(n̂) =

∫

S2

Φi(û)β̄(n̂, û, v̂) dû (2)

wherev̂ is the (fixed) viewing direction in all photos.
This model obviously holds for a scene consist-

ing of purely diffusive (Lambertian) surfaces of arbitrary
and varying lightness. In that case,S∗[p] is the surface’s re-
flectance at pixelp; andβ̄(n̂, û, v̂) reduces to the geometric
spread factor,max {0, 〈û|n̂〉}.

However, this model also fits some non-Lambertian sur-
faces, under more restrictive conditions. It applies, for ex-
ample, when the scene and gauge are made of the same ma-
terial, with the same intrinsic color and finish (e.g. molded
pieces of the same plastic material), possibly with an ob-
scuring layer of black “dust” over it. In that case, theS∗ or
G∗ factor would be the transmittance of that dust layer.

2.4. Input gauge model

Besides the scene and gauge images, our method also
needs to be given the gauge’s normal mapĝ and intrinsic
lightness mapG∗. If the gauge has a simple geometric shape
and uniform color, that information can be computed ana-
lytically from a few parameters. Alternatively, these can be
given as of two additional images, respectively one chan-
nel (G∗) and three channels (ĝ[q]).

2.5. The signature matching principle

If the model (1) holds, then, for any two pixelsp, q such
that ŝ[p] = ĝ[q], we must haveLi(ŝ[p]) = Li(ĝ[q]) for all
i, and thus

Si[p]

Gi[q]
=

Sj [p]

Gj [q]
=

S∗[p]

G∗[q]
(3)

for all i andj. That is, the vectors

S[p] = (S1[p], .. Sm[p]) = S∗[p](L1[p], .. Lm[p])
and

G[q] = (G1[q], .. Gm[q]) = G∗[q](L1[q], .. Lm[q])
(4)

must be multiples of each other, by the ratioS∗[p]/G∗[q].
Therefore, we could in principle determine the normalŝ[p]
at a point of the image, by looking for a pointq in G such
thatG[q] is a multiple of the vectorS[p]. Assuming that nei-
ther vector is zero, this is equivalent to matching thelight-
ing signaturess[p] = g[q], where

s[p] =
S[p]

|S[p]|
g[q] =

G[q]

|G[q]|
(5)

and|·| is any norm ofRm, e.g. the Euclidean norm|X| =
(
∑m

i=1
X2

i

)1/2

. That is, we locate a pointq on the gauge
images that reacts in the same way as pointp of the scene to
changes in the light field, except for a fixed constant factor
α[p].

Having located the matching gauge pointq, we can re-
cover the normal map and intrinsic lightness map of the
scene atp by

ŝ[p] = ĝ[q]

S∗[p] =
|S[p]|

|G[q]|
G∗[q]

(6)

2.6. Feasibility conditions

Formally, the result of the procedure consists of two
functionsσ̂ andσ∗, from the scene image domainS to the
set of all normals (that is, the unit sphereS

2) and to the real,
respectively, where

σ̂[p] = ĝ(g−1(s[p])) and σ∗[p] = G∗(g−1(s[p]))
(7)
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for all p ∈ S.

Thus, in order for the method to be feasible, the follow-
ing conditions must be satisfied:

(C1) the range ofg must include the set of all vectorss[p]
that occur in the scene images; and

(C2) the functiong must be invertible.

Condition (C1) means that, for any visible pointP of the
scene, the gauge must have at least one visible pointQ with
the same normal asP . Condition (C2) is more complicated,
since it depends on the BRDF̄β. Basically, it says that any
change in the surface’s normaln̂ must imply a change in the
normalized gauge image intensitiesg[p] — that is, a change
in the vectorG[p] which is not simply a scaling. By count-
ing degrees of freedom, it is obvious that for every normal
direction n̂ there must be at least three lighting setupsΦi

which illuminate surfaces with that orientation. This con-
dition is usually sufficient for Lambertian surfaces, if those
three light fields are dominated by compact light sources in
well-separated and non-coplanar directions.

2.7. The light table

Computationally, the hardest part of the method is invert-
ing theg function, that is, finding the pointq ∈ G such that
g[q] = s[p].

The light gauge normal map̂g and the gauge photosGi

can be preprocessed to produce alight signature table, a set
T of triplets(ĝk,gk, αk), each consisting of the light signa-
turegk, the surface normal̂gk, and the normalizing factor
αk for some pixelqk in the gauge photos. Note that the pixel
qk itself is irrelevant and need not be stored. Thus the nor-
mal computation reduces to finding the normalĝk in this
table whose associated light signaturegk best matches the
scene’s signatures[p]. However, due to the somewhat ir-
regular nature of the function̂g ◦ g−1, the computation is
still quite expensive, since the tableT must have thousands
of entries in order to produce a reasonably accurate normal
map.

To speed up this search, we use abucket grid, a data
structure that has been quite effective in many geomet-
ric search problems [11, 10]. We use an original formula-
tion that is both simpler and more efficient than those re-
ported in the literature. The key idea is that the set of all
normalized signaturesgk spans a two-dimensional mani-
fold in m-dimensional space, which can be projected onto a
plane with moderate geometric distortion. Therefore, the ta-
ble can be efficiently hashed into a two-dimensional bucket
grid structure, and the search can be confined to a few buck-
ets. The details are given in a companion paper [13].

3. Light gauge processing

3.1. Spherical light Gauges

As explained in section 2.4, the normal computation
method requires knowledge of the light gauge’s intrinsic
lightness mapG∗ and normal map̂g, precisely matching the
photosGi. For Lambertian scenes, we use smooth Lamber-
tian spheres of uniform color. The spheres should be small
enough to be placed near the target objects without signif-
icantly disturbing the light field. The spherical shape pro-
vides a fairly uniform sampling of the light field, and sim-
plifies considerably the computation of the gauge’s surface
normals.

3.2. Virtual light gauges

In practice, the light gauges deviate from the ideal spher-
ical shape, due to manufacturing defects, dents, scratches,
etc.. Even a small defect, covering a couple of pixels, may
introduce large errors in the signature-to-normal table. A
small dent or bump may create an arbitrarily large error be-
tween the actual surface normal and the given normal map
ĝ. A small stain, especially one that changes the surface fin-
ish, will change the normalizationα, thus introducing a bo-
gus complementary stain at every part of the scene that has
that normal orientation. Moreover, if the stain has a differ-
ent BRDF than the scene, it may also change the normalized
signatureg by a large amount. Either kind of defect will
introduce grossly incorrect normal-signature pairs(ĝk,gk)
into the tableT , which may produce large errors over large
areas of the output normal mapŝ.

3.3. Modeling the shading function

This difficulty can be overcome by observing that
the BRDFs of typical materials, especially the Lamber-
tian ones, broadly spread the light flowing in any direc-
tion u over the hemisphere of all directions that make an
acute angle with the normal̂s. It follows that the shad-
ing functionLi of Lambertian and near-lambertian surfaces
is a fairly smooth function, even when the light flow is con-
centrated in a few directions.

Thus, the solution to the problem of imperfect gauges is
to filter the “noisy” shading functionLi that is obtained by
pairing the presumed normal mapĝ[q] of the gauge with the
noisy photoGi[q]. The smoothing generally removes spuri-
ous entries due to small defects, leaving only the useful part
of the shading data.

In any case, once we have determined the smoothed
shading functionsLi, we can combine them with the nor-
mal mapĝ of any suitablevirtual gauge, and produce the
artificial gauge photos by the compositionGi ← Li ◦ ĝ
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for input to the matching procedure. The obvious choice for
a virtual gauge is a hemispherical surface, since it evenly
samples all normal directions that are visible from the cam-
era. In fact, the input imageŝg andG1, .. Gm are simply a
visually convenient way of entering the shading functions
L1, .. Lm to the method.

3.4. Fitting a simple light model

When computing the smoothed shading functionsLi, we
may further improve the result by incorporating any infor-
mation we have about the light flowΦi used in the scene
Si. For example, if we know thatΦi was dominated by di-
rect light from a single point-like source at an unknown lo-
cation, we can restrict the smoothed shading functionLi to
a function of that form.

In our tests, we assumed a slightly more complex model
where each light fieldΦi was dominated by an isotropic and
uniform ambient field of unknown intensityAi, and a dis-
tant source of unknown intensity and directionŵi, which,
when seen from the scene, was contained in a cone with
known angular radiusρ. Assuming a Lambertian BRDF, the
shading functionLi(n̂) generated by such a source coin-
cides with that of a slightly dimmer point source in direc-
tion ŵi, for those surface orientations that are fully illumi-
nated by the extended source — that is, whenever the angle
between̂n andŵi is less thanπ/2− ρ.

For those normal directions, the shading function (in-
cluding the ambient term) is simply

Li(n̂) = Ai + Wi(〈ŵi|n̂〉)
= Ai + Wiŵi.xn̂.x + Wiŵi.yn̂.y + Wiŵi.zn̂.z

(8)
Note that this is an affine (“linear”) function of the nor-
mal vector’s coordinateŝn.x, n̂.y, n̂.z, with unknown co-
efficientsAi, Wiwi.x, Wiwi.y, Wiwi.z.

Therefore, we compute the unknown parametes from the
gauge photoGi and the gauge normal map̂g, by the fol-
lowing iterative procedure. Starting with a guess for the di-
rectionŵi, we identify the subsetG′ of all pixels q where
ĝ[q] · ŵi ≥ sin ρ. We then compute the coefficientsAi,
Wiwi.x, Wiwi.y, Wiwi.z of formula (8), by a straightfor-
ward least-squares fitting ofGi[q] over the pixels inG′.
From the fitted coefficients we extract an improved estimate
for the directionŵ.

This procedure is iterated until the setG′ has stabilized,
and the fitted function is then extended to the whole spe-
here of normal directionŝn. If t = n̂〈̂|w〉i is greater than
sinρ, Li(n̂) is defined by equation (8) above. Ift is less
than− sinρ, Li(n̂) is just Ai. If t lies between these two
values,Li(n̂) is defined to be the unique quadratic polyno-
mial in t that interpolates between the two parts withC1

continuity. (The background grid is actually flat; the distor-

tions in the reconstructed terrain seem to be due to local in-
homogeneities in the light field.)

Figure 2(a) shows a photo of an actual light gauge, with
several imperfections (including noticeable deviations from
the ideal spherical shape). Figure 2(b) shows the artificial
photo of a virtual light gauge, perfectly spherical, rendered
with the simple shading function that was determined by the
above procedure.

(a) (b)

Figure 2. An actual gauge (a) and the virtual
gauge (b)

4. Experiments

In order to validate the method, we used a set of im-
ages of ceramic fragments. All images tested had three
gauges, placed near the top center of the image and near
the bottom corners. The original images were acquired with
a Sony Mavica CD-300 camera, in high-resolution mode
(2048×1536 pixels, JPEG format). They were converted to
PPM and reduced to512 × 384 size so as to remove most
of the camera noise and JPEG quantization artifacts.

The tests were performed with three images of each
scene, taken with different illuminations. The normal maps
computed by our method were converted to slope maps and
integrated to produce height fieldsZ(x, y). These height
fields were then rendered from different viewpoints with
a 3D terrain visualization program, to produce the im-
ages 3, 4, and 5 (The background grid is actually flat; the
distortions in the reconstructed terrain seem to be due to lo-
cal inhomogeneities in the light field.). All these images will
be available at the project’s WWW site [3].

5. Conclusions

We have obtained fairly reliable results from multiple-
image photometric stereo, by using photos of known light
gauge objects to measure the actual light field, and numeri-
cal fitting to smooth out the shading functions derived from
those photos.

We believe that the method can be extended and im-
proved in many aspects, for instance by the use of more
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complex lighting field models and more complex BRDF
functions.

Figure 3. A three-dimensional view of a re-
covered height field.

Figure 4. Another of three-dimensional view
of the same field.

Figure 5. Another reconstructed height field.
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