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Abstract

We describe a robust method to recover the depth coordirated normal or slope
map of a scene, obtained e.g. through photometric sterenterférometry. The key
feature of our method is the fast solution of the Poissoe-iikegration equations by a
multi-scale iterative technique. The method accepts ahteigap that can be used to
exclude regions where the slope information is missing drusted, and to allow the
integration of height maps with linear discontinuitiesdlswas along object silhouettes)
which are not recorded in the slope maps. Except for pathcdbgases, the memory and
time costs of our method are typically proportional to thenfwer of pixelsN. Tests show
that our method is as accurate as the best weighted sloggattes, but substantially
more efficient in time and space.

1 Introduction

Theintegration of a slope mafo yield a height (or depth) map is a computational problen
that arises in several computer vision contexts, such agesfram-shading11, 12] and
multiple-light photometric steredl, 27]. This problem has many important real-world
applications. See figurk
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Figure 1: Some applications of slope integration in photbimetereo: 3D face
capture 0], security inspections4], archaeology]4, 20], and dermatology43].

Abstractly, in this problem we want to determine an unknowal functionZ defined on
some regiorD of R?, given its gradienflZ = (9Z/dx,dZ/dy). That is, we wish to fin
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such thatdZ/dx = F anddZ/dy = G, whereF andG are two given real functions defined
onD. Itis well known that this problem has a differentiable gwln if and only if the field
(F,Fg) is curl-free, that is9F /0y — dG/dx = 0 everywhere. Then the functiah can be
expressed as a line integral along any path from a referesiog (%o, o) to (X,y).

In practical contexts, however, there are at least threficdifies with this approach:
First, the slope functions andG are generalldiscretizedi.e. known only at certaislope
sampling points fu,v], which usually form a regular orthogonal grid. Second, ta&ads
usually contaminated withoisearising from unavoidable measurement, quantization, and
computation errors. At some points, the expected magnitdidiee error may be so high
that the slope is essentially unknown; and this may happenlaxge regions of the domain
D. Third, the height functioZ is usuallydiscontinuous The height fieldZ(x,y) of a real
scene almost always hatiffs—step-like discontinuities along the silhouettes of salin
jects. Some slope acquisition technologies, includingtrpbstometric stereo methods, will
severely underestimate the mean slope across cliffs. Sfalpes will also be meaningless
wherever the height itself is poorly defined, e.g. where ttene is highly porous, trans-
parent, or covered with hair. In general, neither the positior the magnitude of these
anomalies can be deduced from the slope maps alone. Bedahss@complications, algo-
rithms that may seem valid in theory (such as path integmatiften yield very poor results
when applied to real world data. Several integration meitbdt have been described in the
literature (see sectioB) are unsuitable for photometric stereo, either for beirgdensitive
to noise and cliffs, or for being too costly for use with higésolution maps

In this paper we describe a multi-scale iterative integraprocedure that is as accurate
and robust as the best existing metods, but substantialke eificient. Except for some
pathological cases, it memory and time cost scales lingdgtlythe number of data pixels,
making it quite practical even for multi-megapixel maps.

Like the best existing method3][ our procedure also acceptsvaight maghat specifies
the reliability of each gradient sample and the location udpected cliff discontinuities:
This information allows the procedure to ignore unreliatidea and to avoid integrating the
slope across cliffs. The weight map can be obtained in manysweither from external
information or as a result of error detection algorithmslagapto the slope data?[ 3, 4, 5,
16, 18, 27]. Most of these weight acquisition techniques can be usé eur integrator as
well. In this paper, however, we are concerned only with teeti@l integration problem;
assuming that the slope and weight maps are given and fixed.

2 Related Work

Most of the previous algorithms for the integration of slapaps can be classified into four
broad groupspath integration Fourier filtering, local iteration, anddirect system solving

Path-integration methodsassign a height to one reference pixeand then compute the
height of every other pixed by performing a numerical line integral of the gradient field
along a path fronp to g. This group includes the naive row-by-row integrati@g][as well

as other methods that choose the paths so as to avoid lovtygoraiissing data—e.g. by
finding an optimum spanning tree and integraling along id@se by Fraile and HancocR,[

7]. These methods are generally quite fast, since they requily O(N) operations for an
image withN pixels. However, they are very sensitive to noise and digcoities: if the
heights of two adjacent pixels, p” are computed by distinct paths, integration of the noise
component of the gradient will result in a spurious heiglfeidince between them.
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This problem can be alleviated, but not soved, by averadiegititegral along many
distinct paths between the two pixelsd. While this approach gets rid of spurious steps
due to noise, its cost is prohibitive (proportionalN&® for an image withN pixels) and its
results are still inferior to those of non-path methods dbsd below.

Fourier filtering methods are based on the observation that integrating a functioreeor
sponds to dividing each component of the Fourier transfoyrdribtims its frequency. This
approach was pioneered by Frankot and Chell&pdi the Fourier domain the curl compo-
nent of the gradient data can be easily filtered out, and stheothing filters can be applied
as well R6]. Fourier technigues can be used also to efficiently soleaitiweighted Poisson
equation (see below) as done by Georghiaztes. [9].

Through the use of fast Fourier transform algorithms (FFDQT), these methods ob-
tain the height field foN pixels using onlyO(N) space an®(NlogN) operations. However,
this approach does not allow the use of a weight map, beche$d=T always gives the same
weight to all data samples. As a result, these methods wiléfiaout any invisible cliffs and
deform the surface over a wide area surrounding them.

Local iteration methods reduce the slope integration problem to a systeri @quations
whose unknowns are thé heights, and where each equation relates one height vatle &
its neighbors to the given derivatives in that neighborhddute equations (whether linear or
non-linear) are then solved as in the Gauss-Seidel iteratethod: starting with some initial
guess, each equation is solved in turn to recompute onethailyle, assuming the neighbors
are fixed, until all the heights appear to stabiliz&,[17].

The local equations can be derived in several way4 1, 21]. However, all these local
criteria generally yield some discrete (and possibly naoedr) version of Poisson’s equa-
tion 02Z = h(x,y). ~Since each equation refers to a small number of height salihe
whole system uses onl®(N) storage. This formulation does not generate spurious ste|
like the path-integration methods. Indeed, the solutiothéoretically equal to that of the
Fourier filtering. The advantage of the iterative formwati as pointed out by Agrawait
al. in 2006 [3], is that each equation can be tuned to ignore bad data samptesuspected
discontinuities, as indicated by a weight map. On the otlaerdh although each iteration
requires onlyO(N) operations, the number of iterations needed to reduce the leglow a
specified tolerance is usually proportional to the squate®fmage’s diameter, that is b
so the total running time is proportional k.

In 2004, Chen, Wang and Wang described a “pyramid-basediodeb speed up iter-
ative solution of the Poisson equatio®$.[ Their method (which does not accept weights)
solves a sequence Nfx N Poisson systems, where at st&geach height]u, V] is related to
heightszju + 2 v+ 2k]. While the use of longer strides substantially improveddbever-
gence of the iteration, the speed and accuracy of this metieoel still quite inferior to those
of Fourier-based algorithms.

Direct system solving methodsalso set up alN x N system of equations from local con-
straints, but solve the system by a direct method, such ass@aulLU or Cholesky factor-
ization. (If the equations are non-linear, they must bediieed and the process must be
iterated over, as as in the Newton-Raphson method.) Thimaph is used, in particular, by
several of Agrawal’s “Poisson based” method. [

Direct solution methods are generally slower than Fouriethads but much faster than
iterative ones. However, their running time grows liR¢N*®), according our tests; and
their memory requirements (even with good sparse matribss€) makes them impractical
for multi-megapixel slope maps.
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3 Weighted multiscale integration

Our multiscale integrator builds the linear equation sysfer a weighted variant of the
discrete Poisson problem, and solves it by the Gauss-Seidélauss-Jacobi) iterative algo-
rithm. Unlike other local iterative methods, it obtains thigial guess by recursively solving
a reduced scale version of the problem. Namely, it reduceglitten slope map$,g,w to
one half of their original width and height, recursively cpates from them a reduced-scale
height mapez, expands the latter to twice its size, and uses the GausgelSration to ad-
just this map accoding to the full-scale slope data. Thersion stops at a leveh where the
slope maps are so small that the iteration will quickly cages from any initial guess. See

figure2.
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Figure 2: The multiscale integration method.

3.1 The algorithm

The central part of our algorithm is the recursive procedimenputeHeightbelow:

ComputeHeights, g, w)

1.

8.
9.

10.

If f is small enough then

2. z—(0,0,...,0);

else

4. f'« ShrinkSloped,w); g « ShrinkSlope®, w);
5. W « ShrinkWeightéw);

6. Z < ComputeHeights’,g’,w);

7. z+ ExpandHeighte);

A, b — BuildSystertf, g, w);

z+— SolveSyste(A, b, z);

Returre.

Note that our scheme differs substantially from the “pyrdvibbased” method of Chen, Wang
and Wang §]. For one thing, at each scakethe Poisson system of our method My
unknowns, instead dfl as in their method.
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Inputs: The the slope maps,g and the weight mag should be three real-valued arrays
with the same dimensions. Each samfilg v] is assumed to be an average@/dx around
the slope sampling point[p,v] = (u+1/2,v+1/2); and similarly forg[u,v]. Each weight
w[u,v] should be a non-negative number reflecting the relativéwvitarshiness of the corre-
sponding slope value§u, V], g[u,Vv]. The weightw[u, V] should be zero if the corresponding
slopes are completely unreliable — in particular, if theraynibe a cliff crossing the pixel
centered ap[u,V]. In that case, the datdu,v] andg|u, V] will be completely ignored. Our
algorithm assumes thafu, v] = 0 also for any pixels theat lie outside the domBin

Outputs: The algorithm returns an array of height sampesv], nominally taken aheight
sampling points fy,v] = (u,v), displaced from the slope sampling poims, v] by half a
step in each direction. Because of these assumptions aitaey computed by our method
will have one more column and one more row than the slope maps.

Building the system: Like other Poisson-based method$,[25], our algorithm builds in
step8 a linear equation system with one equation and one unknowedgch height value
Z[u,v]. Each equation states the equality between two estimatesptdcianL (z) = O- (0Z)
at the pointg[u,v]: one computed from the unknown heights (the left-hand siaedl one
from the given slope values (the right-hand side).

The precise nature of the estimates is not critical; our iscdie iterative method can
be used with other Laplacian estimators, including noedinones.  In our implementa-
tion [29], we use the equation.Z(2)[u,v] = —Z(f,0)[u,V], where

W,o W+0 W()f W0+
-Z@uVv] = Quv|——z o —2z20——2_— —2 1
@y = 2u] -~ oz {020z — (2 (1)
W W w w
—-9(f, = —f 4 —f, - f g
( g) Woo Woo ’ Woo " Woo o @)
W__ W, W_, W,
+ —0qQq__ o ——0_. —
W()o g Wo() g+ Wo() g + W()o g++
and, forallr,se {—,+} = {—1,+1},
fs = flu+rv+g Os = gu+rv+s Ws = WU+rv+g
Wos = Wis+W.s Wro = Wrp +Wro 3)
Woo = Woy +Wo +W_ o+ W,
Zs = ZUV+S Zo = Zutry

Boundary cases:These formulas assume that the weigh, V] is O if the corresponding
point lies outside the domal. With this convention, equatior3(1) can be used even along
the margins of the domaiB, or at grid cornersj[u, v] that are adjacent to missing slope data.
As long as one of the slope samples surrouding a mint] has nonzero weight, equation is
valid and can be used to compufe, v] from its neighbors. As a consequence, the algorithn
will patch up isolated one- to three-pixel “holes” in the @l integrating around them.

Indeterminate values: On the other hand, when all four slope values surroundingel pi
are missing the value du,Vv] is essentially indeterminate. One may exclude those heig|
values from the linear system, and set them taAN, or any other arbitrary value.

Analysis: To analyse the efficiency of this algorithm, we should coaswhat the steps do in
the Fourier domain. When the slope maps are reduced, therhiggguency components of
the data are lost, while the remaining lower-frequency congmts have their wavelengths
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reduced by one half. Therefore, the recursively computédtisn z**1 to the reduced
problem, after being expanded to the original scale, willnbastly correct in the lower
frequencies; only the small detail (at the scale of one orpixels) will be missing. These
details will be fixed by the Gauss-Seidel solver after a smathber of iterations, largely
independent oN. So, the recursive process is fast because each Fourierocmmpof the

height map gets computed at the scale where its wavelengthyis few pixels. Therefore;
the time spent at scalewill be proportionaIN/4k; and the total time for all scales will be
(14+1/4+1/4%+---1/4MO(N) < (4/3)O(N) = O(N).

4 Robustness and accuracy

To test the robustness and accuracy of our method, we cochtareutput with that of
representative implementations of the main competing otkth

Data sets:We used the slope datasets and weigh maps shown in figlitee setsbabel ,
spdone, andcbr anp were derived from mathematically defined height fieddg, y). The
sbabel field is C;-smooth except at the ends of the ramp, with steep but nataewalls.
Thespdone field has a slope discontinuity around the dome’s rim. The anp field is
Ci1-smooth along the ramp but has vertical cliffs on three sidBse gradient maps were
obtained by Hann-weighted subsampling of the analytio/dévies, a process that resultsin
some sampling noise at gradient discontinuities, and ispbetaly oblivious to cliffs. In
particular, the the cliffs around the top platformabr anp are completely invisible in its
slope map, and their location is defined only by the zeros éngilien weight map. The
psf ace data set is the gradient field of a human face, obtained byopetric stereo with
the UWE MVL Photoface setufd.]]. Its binary weight mask, created by hand with an image
editor, excludes regions where the data is known to be ainieli

Methods: Each dataset was processed with the algorithms listed ie fab Methods
AS, EM, ME, AT, UP were described by Agrawel. alin 2006 B]; we used their Matlab
implementations]], adapted to use our input and output file formats. MethodsA\%, ME,
AT use the weighted Poisson-based approach, with Matlg@alsse matrix solver; the first
three use iterative weight adjustment. However in AS and Bdteight map is internal and
is neither accepted not returned by the code. UP is an untesidboisson method whose
linear system is solved by discrete cosine transfom.

Table 1: Methods used in the accuracy tests. The third colettmwhether the
method accepts an external weight map.

Code | Type winput | Description
FC | Fouriertransf. | No Frankot-Chellappa [8, 15
UP | Fouriertransf. | No Least Squares (unweighted Poisson) [1, 3]
AS | Direct sol. No a-Surface [3]
EM | Direct sol. No Energy Minimization [1, 3]
AT | Direct sol. Yes Affine Transforms (or Diffusion) [1,3]
ME | Direct sol. Yes M-Estimators [1, 3]
MS | Multi-scale iter.| Yes Our multiscale integratiom method ~ [29]

Reference solutions: We compared the output of each method to that of Agrawal’'s’M-
Estimators (ME) method, which appears to be the most acarad robust of the lot. In
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each case we computed the RMS eredoetween the two integrated height fields, after
shifting both to have zero mean; and the relative RMS ef& whereR is the RMS value
of the two height fields. In these computations we considergylthe parts of the domain
where the weight fieldv was nonzero.

spdone sbabel cbranp psface

N

FC

UP

AS

EM

AT

ME

MS

Figure 3: Datasets used in the tests, showing (from top timin)tthe gradient map
f, g, the reliability weight mapv, and the height field integrated by each method.
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Results and conclusions:As table2 and figure3 show, the only methods that obtained
usable results in all data sets were Agrawal’s Affine Tramaf (AT) and M-Estimators
(ME) methods, and our multiscale method (MS). The unweigmethods (FC and UP)
and those which do not accept external weight maps (AS andf&Myl completely on the
datasets with cliffs and invalid data.

Table 2: Relative RMS errors of each method from the ME refegesolution.

spdone sbabel cbranp psface |
Meth. e e/R e e/R e e/R e e/R
FC 0.66| 1.9%| 0.56| 2.1% | 29.99| 120.1%| 19.47| 98.0%
UP 0.14| 0.4%| 0.00| 0.0% || 29.61| 107.1%| 28.94| 114.6%
AS 2.28| 6.6% | 3.22| 12.5% | 29.30| 107.7%| 29.76| 106.0%
EM 4.82| 13.4% | 2.14| 8.0% || 29.61| 107.0%| 24.67| 108.7%
AT 1.77| 5.1% | 3.17| 12.3%| 0.00 0.0%| 0.10 0.7%
ME 0.00| 0.0%| 0.00| 0.0% | 0.00 0.0% | 0.00 0.0%
MS 0.67| 1.9%| 0.60| 2.2%| 4.23| 13.0%| 0.73 3.9%

Limitations The multiscale approach is not valid in situations like fegdirwhen the actual
domain (the region where the weights are nonzero) includesg and narrow corridor.
After a couple of reductions, the corridor will be overrunsro weights. Then the recursive
solution will be useless as a starting guess, and the Gazidsi8eration may take thousands
iterations to converge. In such cases, direct solution®fittear system may be much faster
than our method. How to make MS work in such cases is beyonskityee of this paper.

©)

Figure 4: A pathological case for multiscale integratiomorf left to right: f(©
andw(9 (256x 256),w* (16 x 16), and the heightsobtained by ME and by our
algorithm with 200 iterations per level.

5 Time and memory

Datasets and methodsTo evaluate the efficiency of our method, we measured the abmp
ing time and memory needed for the integration of two squeadignt fieldsspdone and
psf ace, sampled with various grid sizes from 6464 to 512x 512.

We compared our method against two weighted Poisson irttegnarovided by Agrawal
et al. [1], namely the Affine Transforms method (AT) and the weighteisBon system
builder and solver (PC) that is the innermost loop of theiEgtimator, Energy Minimisation,
anda-Surface methods. We removed the outermost loop of theséhiee methods since
we are concerned only with the integration problem, not ttodlem of inferring the weight
map. Those are the only methods in the literature that accegtability weight map (thus
solving the same problem as ours) and are fast enough fotigakhgse.
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Results and conclusions:The results of these tests are shown in fighreThe absolute
runing times are not directly comparable since our code igewrin C and tuned to this task,
while the other methods are implemented in Matlab usingutk-in general-purpose sparse
matrix functions. However, the plots in figugtop) show that the running times scale quite
differently: like O(N) for our algorithm (solid line). and apparently lik@(N*®) for the
direct Poisson solvers (dashed lines).

Our multiscale integrator also uses less memory than trectgolvers; see figurgé
(bottom). Its memory usage is dominated by the Poisson myst@atrix A which has at
most 3N nonzero entries and is stored in a specialized sparse datdwst that uses 60
bytes. The reduced-scale slope and weight maps use aroaddliN bytes in all. The direct
solving methods need to store the mati:and also its upper triangular Gauss fadto(or,
if Ais symmetric, its Cholesky fact®t). Forthese methods, we counted the nonzero entrie
Na in AandNy in U, and estimated the memory usage ablg2 16Ny bytes assuming a
general sparse matrix representationdorWe observed thatly does not exceed\bfor PC
and N for AT, butNy is much larger and seems to grow li@N*1°). (dashed lines).

1000

o AT

1000

s'pdome (sec') o AT I'Jsface (seci
o PC > o PC
100} = MS 100 f = MS

0.01

1000

64x64

128x128 256x256 512x512

o

0.01

1000

64x64

128x128 256x256 512x512

AT  spdome (MB) o AT  psface (MB)
o PC L o PC
= MS B = MS

64x64

128x128 256x256 512x512

64x64

128x128 256x256 512x512

Figure 5: Top: Running time of two direct solving methods (R and of our
multiscale method (MS), in seconds. Bottom: Memory usagdHe system’s
matrix A and itsU factor (if any), in megabytes.

6 Conclusions

Our weighted multiscale integration algorithm is subgtllyt faster and uses substantially
less memory than other methods with comparable accuracycdmdtness, both in practice
and asymptotically. As fas as we know, it is the only methad tian integrate slope maps
with missing data and cliffs of unknown height at megapiesiaiution.
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Our algorithm can be used on its own, with a given weight maslas the core of other
methods that attempt to deduce the weight mask from the slaf@eand other clues. It can
also be adapted to use other estimators for the Laplaciadigayent.
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