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Robust Text Detection.

Abstract—In this paper, we describe SnooperText, a robust and accurate multiresolution approach to detect and classify text regions
in photos and videos of urban scenes. At each resolution scale, our detector first segments the image to detect candidate character
regions, based on their size and aspect ratio. Neighboring character-like regions are then merged into candidate text lines by size and
position criteria. These regions are then validated by a texture classifier, based on F-HOG, a fuzzy version of the histogram of oriented
gradients (HOG) descriptor. SnooperText outperforms other published methods on standard image benchmarks.

Index Terms—Text recognition, histogram of oriented gradients, text descriptor, text tracking.
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1 INTRODUCTION

Text detection is a challenging task in computer vision,
with many potential applications such as traffic monitoring,
geographic information systems, road navigation, and scene
understanding. No efficient solution yet exists for arbitrary
text that is part of an unstructured 3D environment (such as
store names, traffic signs, and indoor sign).

In this paper, we describe SnooperText, a robust and accu-
rate text detector for these tasks. Our detector was developed in
the context of the iTowns project [1], which aims to build tools
for virtual navigation of urban environments. Towards this
goal, a car-mounted camer is used to obtain a geo-localized
set of high-resolution digital photos, with mean viewpoint
spacing of one meter between sets. Each set of images is
assembled offline into a complete imersive panorama. See
figure 1. The purpose of SnooperText within this project
is to extract semantic information (offline) from the images
themselves, which may then be integrated with cartographic
databases, geo-localization data, business directories, and other
information sources. This data is necessary for intelligent
navigation and high-level queries, such as locating a street or
storefront view given the address, store name, or other textual
information.

1.1 OCR for unstructured 3D scenes
OCR algorithms designed for scanned documents perform
very poorly on photos of 3D scenes. See figure 2. The reasons
include extreme text size and font variations, tilted or curved
baselines, strong background clutter and difficult illumination
conditions. Much better results are obtained by applying the
OCR algorithm to the output of a generic text detector, as
illustrated in figure 3.
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Raw Image OCR (Tesseract)

Fig. 2. Attempt to extract text from a storefront photo
using a public OCR (Tesseract).

Preprocessed Image Detected Text Tesseract

Fig. 3. Our proposed text detector & Recognition (Tesser-
act) in Urban Context. There are many readable words
and few noise.

1.2 Our detector
Our text detector, called SnooperText [7], is an hybrid scheme
combining bottom-up and top-down strategies (as defined in
section ??). Regarding methodology, our approach relies on
the hypothesis generation/validation paradigm. The hypothesis



Fig. 1. Panoramic street images generated in the iTowns project [1].

generation is carried out using a bottom-up approach. Candi-
date character regions are obtained by adaptive segmentation
and identified by their size and aspect ratio, then by a binary
shape recognizer, based on a combination of three geometric
descriptors and a generic support vector machine (SVM)
classifier [?]. Tentative character regions are then grouped by
position and size criteria into rectangular regions believed to
contain single words or lines of text. These regions are further
filtered by a novel text/non-text classifier, based on histogram
of oriented gradients (HOG) descriptors.

In order to deal with the strong character size variations in
urban context, we run the basic algorithm at multiple scales
of resolution. A final step eliminates or merges any conflicts
(overlapping candidate text regions that were found at different
scales).

The remainder of the paper is organized as follows.
?[Check!] Section 2 presents the overall system for text detec-
tion. Section 2.2 and 2.3 point out the two methodological area
of novelty of the paper. Section ?? shows that SnooperText is
very competitive being among the state-of-the art systems in
the ICDAR dataset. Finally section 4 concludes the paper and
proposes directions for future works.

2 OVERVIEW OF THE METHOD

The whole scheme of SnooperText is shown in figure 4. As
previously mentioned, our system generates a set of text hy-
potheses, and validates them using a complementary strategy.
Regarding hypothesis generation our algorithm is composed of
three main steps: image segmentation, character classification,
and character grouping.

2.1 Segmentation
The segmentation step is based on a morphological operator,
toggle mapping, introduced by Serra [?]. Toggle mapping
is a generic operator which maps a function on a set of
n functions and is generally used for contrast enhancement
and noise reduction. Our segmentation procedure is based on
the algorithm of Fabrizio et al. [?], which obtained second
place in the recent ICDAR 2009 Document Image Binarization
Contest [?]. The segmentation with the toggle mapping is
done by means of morphological erosions and dilations. The
advantage of this approach is that it can efficiently detect
image boundaries necessary to recognize each image character.

The segmentation produces a set of homogeneous regions.
We now aim at discriminating regions that contain text (char-
acters) from those that do not. To achieve this goal, we use
a classification strategy based on the extraction of shape de-
scriptors in each image region. We have selected three families
of descriptors: Fourier moments, pseudo Zernike moments
and a new definition of a polar representation [4]. These
descriptors are appealing since they are scale and rotation
invariant. Then, a hierarchical SVM classifier [?] is used to
discriminate characters from non-character regions. Thus, we
train three different classifiers at the fisrt level with each family
of descriptors. The final decision is given by merging the
previous outputs into a third SVM classifier (Figure 4).

In order to build text hypotheses, we developped a grouping
step where all recognized characters are grouped all together
with their neighbours to recover the text regions. The con-
ditions to link two characters to each other are those given
in [?]. They are based on the distance between the two regions
relatively to their height. During this process, isolated text
regions (single characters) are eliminated. This aggregation is
mandatory to generate words and sentences to integrate as an
input in an OCR, but it also suppresses a lot of false positive
detections. At the end rectangular windows are detected in
the image. These windows are the input for the hypothesis
validation step fully described in section 2.3.
?

[To be expanded]

2.2 Multiresolution Scheme
?
[To be fixed/updated]

In principle, fonts of different sizes could be handled by
processing the image with morphological structuring elements
of different sizes. In complex scenes like urban images where
text scale may highly vary, this method is likely to fail,
especially in cluttered background with textured areas or local
illumination variations. Thus, large text areas with texture are
prone to over-segmentation, while small text regions might be
missed.

In order to efficiently handle fonts of arbitrary size, we apply
the basic algorithm (segmentation, text hypothesis generation,
and filtering) in a multiresolution fashion. Each resolution
level is dedicated to detect text regions with a given range of
font sizes. This appraoch has the added benefit that, at coarser
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Fig. 4. SnooperText scheme.

levels, small texture details (high frequencies) are eliminated.
In addition, the multiscale processing is much more efficient
than using larger structuring elements in the segmentation. At
finer levels, our goal is to detect smaller regions, analyzing
more accurately the local image content.

More formally, let us consider a pyramid image I l, l ∈
{0;L− 1}, as defined in the multiresolution framework [?].
At resolution level l, the image is decimated with a ratio of
2, leading to an image size decreased by 4l (with respect to
the initial image). Many solutions can be adopted for relating
resolution levels to text region scales. In this paper, we propose
a simple yet effective technique, using a fixed size over scales.
Thus, at resolution level l, we aim at detecting text regions
with size sl ∈ [ml;ml + δl]. In addition, we define a constant
cl corresponding to the overlap between two consecutive scales
sl and sl+1 (see figure 5), so that:

ml+1 =
ml + δl − cl

4
(1)

As δ and c are constant over scales, we have: δl = δ0/4l

and cl = c0/4l, and ml can be computed as follows:

ml =
m0 + l(δ0 − c0)

4l
(2)

Fig. 5. Region sizes managed at different resolution
levels.

Therefore, if we require to detect text regions with size
s ∈ [smin; smax] (where m0 = smin), with a given overlap
c0 in each level and L pyramid images, δ0 must fulfill : δ0 =
(smax − smin + c0(L− 1))/L.

Practically, our multiresolution algorithm processes as fol-
lows. First, we build a set of L pyramid levels, and run the
segmentation algorithm of [?] in each downsampled image.
At level l, a set of regions ri

l (i ∈ {1;Nl}) are extracted.
Only regions whose area si

l fall into the bound [ml;ml + δl]

are considered for the following processing steps, others are
ignored. Figure 6 illustrates our multiresolution algorithm.
Figure 6(a) shows the image segmentation in the original
image resolution (l = 0), while Figure 6(b) shows the
segmentation in a coarser image resolution (l = 2). As we can
see in Figure 6(c), when l = 0, small text regions are found
(yellow windows), when l = 1, 2 bigger text regions are found
due to the scale intervals computed in equation (2) and thanks
to the texture removeal. Figure 6(d) shows the results of the
monoresolution approach [4], that fail at detecting the word
RIESCOPAM, due to its texture and color.

2.3 Hypothesis validation

?
[Insert short summary of F-HOG in this section]

The F-HOG descriptor is then converted to a binary
text/non-text decision by an SVM classifier with a Gaussian
χ2 SVM kernel K.

Since the classification step only analyzes the local image
content around each character, false positives occur in complex
urban scenes where geometric objects might be confused with
characters. Some false positives are shown in figure 7: e.g. the
bars of the guardrail have a similar shape to a sequence of i’s.

To deal with these false positives, we apply an hypothesis
validation step relying on global image descriptors over the
detected windows. These global descriptors are complemen-
tary to those used in the hypothesis generation process. For
example, in the guardrail case of figure 7, we aim at extracting
features encoding periodical patterns that are not present in
text regions. In this work, we used the Histograms of Oriented
Gradients (HOG) descriptors [?]. HOG descriptors are based
on the idea that local object appearance and shape can be well
characterized by the distribution of local intensity gradients or
edge directions. HOG descriptors proved to reach state of the
art performances for object recognition (e.g. pedestrian detec-
tion [?]), and have been recently used for text detection [?].

To achieve good performances, the HOG extraction in [?] is
based on splitting a given window into N×M cells. This tiling
allows to capture spatial information. In addition, in order to be
robust to local illumination variations, a contrast normalisation
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(a) Image segmentation when l = 0

(b) Image segmentation when l = 2

(c) Multiresolution results: detections at scale l = 0 in yellow, l = 1 in green
and l = 2 in white

(d) Monoresolution results

Fig. 6. Multiresolution system results, 3 scales and L =
2, (a, b and c) and monoresolution results (d). The word
“RIESCOPAM” is detected in the multiresolution approach
but not in the monoresolution (d).

is applied. Groups of N ′×M ′ adjacent cells are grouped into
larger spatial blocks, with an overlap of K cells. Each cell is
then normalised with respect to each of its surrounding block.
In our experiments, we use N = M = 4, N ′ = M ′ = 2 and
K = 2. From the extracted feature, we train a SVM classifier
to discriminate text from non-text windows. We use a Gaussian
chi2 kernel, and perform a cross-validation to optimize its
standard deviation σ parameter. Figure 7 illustrates some non-
text windows that have been successfully discarded after our
hypothesis validation step.

3 EXPERIMENTAL VALIDATION

In this section we determine performance of SnooperText on
three publicly available benchmarks, and compare it with other
state-of-the-art text detector systems.

Fig. 7. Hypothesis validation: the windows above were
correctly identified as non-text by our validation step.

3.1 Benchmarks

Specifically, we use:
1) The 2005 ICDAR challenge collection [6], consisting of

499 color images, captured with different digital cameras
and resolutions, of book covers, road signs, household
objects, posters, etc.

2) The Epshtein et al. benchmark [3] with 307 color images
of urban scenes, ranging from 1024×1360 to 1024×768
pixels, taken with hand-held cameras.

3) A subset of the iTowns Project collection [1], [7],
consisting of a hundred 1080 × 1920 color images of
Parisian façades taken by a camera-equipped vehicle
(similar to Google’s Street View images).

3.2 General parameters

For all tests, the character recognizers were trained on the same
database of single characters provided by Fabrizio et al.. The
character recognition and grouping parameters [7] were set
as follows: minimum character size λ = 5 pixels, minimum
number of characters per group GOC = 2. For the F-HOG
text recognizer, we use the following parameters [?]: candidate
regions were extracted and rescaled to a fixed height H =
21 pixels with Lanczos interpolation [?], and normalized for
contrast and brightness by assuming noise deviation ε = 0.02.
The histograms of gradient orientation (assumed to range over
[0, 2π]) were computed for a grid of fuzzy cells with nx =
1, ny = 7 and nb = 9, resulting in a descriptor of size N = 63.
The full descriptor was then scaled to unit L1 norm.

For each benchmark, we first executed the SnooperText
algorithm without the F-HOG filter on the given training set,
which produced a large number of false as well as true posi-
tives. We then manually classified the reported regions as text
or non-text, and used this dataset to train the SVM classifier
of the F-HOG filter. The standard deviation parameter σ of
the SVM kernel was optimized by cross-validation.

3.3 Performance metrics

To quantify the performance of the various algorithms, we
used the protocol and metrics described in [6]. We start
with the ICDAR 2005 measure of similarity [?] between two
rectangles r, s, defined as

m(r, s) =
S(r ∩ s)
S(r ∪ s)

(3)

4



Fig. 8. On left the SnooperText* text detection results (boxes). On right the results of SnooperText* + F-HOG text
filtering. Images from Epshtein et al and iTowns datasets.

where S(t) is the area of the smallest rectangle enclosing the
set t. The function m(r, s) ranges between 0 (if the rectangles
are disjoint) and 1 (if they are identical). The metric m is
extended to a set of rectangles Z by the formula

m(r, Z) = max{m(r, s′) : s′ ∈ Z} (4)

From this indicator one derives the ICDAR precision p and
recall r scores [?]

p =
∑

r∈E m(r, T )
#E

r =
∑

r∈T m(r, E)
#T

(5)

where T is the set of manually identified text regions in the
input images, and E is the set of text regions reported by the
detector. For ranking purposes, the ICDAR 2005 committee
used the f measure [?] which is the harmonic mean of
precision and recall,

f = 2/(1/p+ 1/r) (6)

There are several ways of averaging these metrics over a
multi-image database. The approach used by the ICDAR 2005
scoring program (method I) is to evaluate p, r and f separately

for each image, and then compute the arithmetic mean of the
f -scores over all images. Another approach (II) is to compute
p and r for each image, then take the arithmetic means of all
p and r values, and compute f from these means. We note
that the first method suffers from higher sampling noise and
a negative bias compared to the other two. These points must
be considered when comparing f values reported by different
authors.

3.4 Results

3.4.1 ICDAR benchmark

We compared the performance of SnooperText on the ICDAR
collection with the published scores of all detectors that that
took part in the ICDAR 2003 and 2005 Challenges [?]. We
also considered the detectors of Tian et al. [9], H. Chen et
al. [2] and Epshtein et al. [3], which did not take part in the
Challenge but reported even higher f -scores (higher than the
best ICDAr entry) on that collection.

For this benchmark, we followed the ICDAR Challenge
protocol: namely, used the “training” subset of the ICDAR
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collection to train the SnooperText algorithm (specifically, the
SVM of the F-HOG filter), and the ICDAR “testing” subset
to evaluate its performance. The results are shown in table 1.
All p and r scores were computed with the ICDAR scoring
program [6]. The scores in the fI and fII columns were
averaged by methods I and II , respectively. Observe that

System p r fI fII

ST2 0.73 0.61 0.65 0.67
Yi and Tian [9] 0.71 0.62 0.62 0.66

H. Chen et al. [2] 0.73 0.60 — 0.66
Epshtein et al. [3] 0.73 0.60 — 0.66
Hinnerk Becker† 0.62 0.67 0.62 0.64

ST3 0.64 0.59 0.59 0.61
Alex Chen† 0.60 0.60 0.58 0.60

ST2 0.42 0.65 0.47 0.51
Ashida† 0.55 0.46 0.50 0.50

HWDavid† 0.44 0.46 0.45 0.45
Wolf† 0.30 0.44 0.35 0.36

Qiang Zhu† 0.33 0.40 0.33 0.36
Jisoo Kim† 0.22 0.28 0.22 0.25

Nobuo Ezaki† 0.18 0.36 0.22 0.24
Todoran† 0.19 0.18 0.18 0.19

Full† 0.01 0.06 0.08 0.02

TABLE 1
Performances of various text detectors on the “testing”
subset of the ICDAR image collection. The competitors
of the ICDAR 2003 and 2005 Challenges are marked

with †.

SnooperText achieves the same precision (73%) as the best
published methods [3], [2], [9], but with a better recall (61%
vs. 60%).

3.4.2 Epshtein benchmark

For the Epshtein benchmark, we compared SnooperText
against the stroke-width transform algorithm of Epshtein et
al. [3], the only one for which performance data was available.
Since the reported performance was measured over the entire
image collection, we used ICDAR and iTowns collections to
train our F-HOG filter. The results are shown in table 2.

System p r fI fII

ST2 0.59 0.47 0.49 0.52
Epshtein et al. [3] 0.54 0.42 — 0.47

TABLE 2
Performances the SnooperText detector and of the

Epshtein et al. detector on the whole Epshtein image
collection.

3.4.3 iTowns benchmark

For the iTowns benchmark, there are no published perfor-
mance figures for any other algorithm, so we give those of
our algorithm only. For this test, we used the ICDAR and
Epshtein image collections to train F-HOG filter, and the entire
iTowns collection to evaluate the SnooperText performance.
The results are shown in table 3.

System p r fI fII

ST2 0.72 0.50 0.56 0.59

TABLE 3
Performance the SnooperText on the whole iTowns

image collection.

4 CONCLUSION

We have proposed a complete system for text detection in
complex natural images. Focussing first on character seg-
mentation, filtering and grouping, we generate text region
hypotheses. This process is embedded in a multiresolution
scheme to handle text regions of various sizes. A validation
step exploiting region signature based on texture analysis
allows to filter a lot of false positives. We have evaluated
our scheme in two databases, achieving very good results. As
shown in experiments, our multi-scale approach significantly
improves text detection performances with respect to a single-
scale approach.
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