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Abstract

In this paper, we describe a complete text extraction sysbermutomatic indexing of geo-
referenced mosaics of building faades, especially sigivagéores and services. The sys-
tem consists of an original text detector, calledd®PERTEXT, whose output is fed to the
TESSERACTOpen-source OCR software NSOPERTEXT uses a multi-resolution approach
to remove irrelevant detail from character shapes and talabhe use of overly large im-
age processing kernels. At each resolution scale, ourmylsteates candidate characters
by using image segmentation and shape descriptor baseactdranon-character classifica-
tion. The candidate characters are then grouped to forraresgindidate words or candidate
text lines. These candidate regions are then validated lexttnon-text classifier using a
HOG-based descriptor specifically tuned to single-ling tegions. We show thatN®oP-
ERTEXT outperforms other published state-of-the-art text deieatlgorithms on standard
image benchmarks. We also describe two metrics to evalbatertd-to-end performance of
text extraction systems.
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1. Introduction

The detection of text embedded in images or videos of urbanescis a challenging
problem in computer vision [1] with many potential applicat, such as traffic monitoring,
geographic information systems, road navigation, andesaaderstanding. Here we consider
one particular application, the iTowns project [2], whidima to build tools for resource
location and immersive navigation in urban environmentajlar to that of Google’s Street
View [3]. The main raw data for the iTowns project is a colientof GPS-tagged high-
resolution digital photos of building facades, taken watket of car-mounted cameras. The

mean viewpoint spacing between photo sets is about one.nseteffigure 1.

Figure 1: Imaging vehicle and example of an urban scene ircageired by the iTowns project.

The raw images obtained by the car are stitched into geoer®ed mosaics, each one com-
prising frontal views of the faades of all building on oneesaf the a street between consec-
utive street intersections. See figld® These mosaics are then processed offline to extract
any legible textual information, such as street and traffins store names, and building
numbers. The extracted strings are then stored in a gemenefed database, which is used
to answer textual queries by users—for example, to locaeatldresses of stores with a

specified name or selling a specified product. See figure 2.
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SUSHILAND . Tél : 01.46.28.03.2

Adresse approximative:
173 R Du Fbg St Antoine

Figure 2: Result of a search for the query string “sushi” tigtothe iTowns user interface. The textual informa-
tion was extracted with our text detection system.

The iTowns project couldCould, or did? What is the current state of the image
collection effort?] easily generate hundreds of thousands of such mosaicsingia €ity.
The manual annotation of all these images with the visibieitd information would be very
time consuming and probably impractical. Clearly, automhatigorithms for this task are
highly desirable.

The difficulties in this task mainly come from the diversifitioe texts (including extreme
text size and font variations, and tilted or curved basshinthe complexity of the back-
grounds (including many vaguely text-like objects suchaxés, windows, cobblestones,
etc) and difficult illumination conditions. OCR algorithmesigned for scanned documents
perform very poorly on such photos. See figure 3(a). Muchebeésults are obtained by
applying an OCR algorithm to the output of a text detector gte=dl specifically for such

images, as illustrated in figure 3(b).

*[Say this somewhergWe are not considering vertical aligned text regiofdut ver-
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tical text is very important for the iTowns project, no?]

Text detection
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Figure 3: (a) A store-front photo from the iTowns image base the output of the ESSERACTOCR software
applied over the whole image. (b) Text line regions iderdifiy our detector and the output of the back-end of

the TESSERACTOCR software applied to those regions.

In this paper, we describeN® OPERTEXT, the text detector we developed for the iTowns

project. SVIOOPERTEXT initially locates candidate characters by using image ssgation
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and a shape-based character/non-character binary @as$ifie candidate characters found
in this step, represented by their bounding boxes, are trmipgd by simple geometric cri-
teria to form either candidate words or candidate text linEsese steps are performed in
a multi-scale fashion, in order to efficiently handle widelijferent character sizes and to
suppress irrelevant texture details inside the charadtamally, the candidate text regions are
validated by a binary text/non-text classifier, that regesnty candidate region that does not
seem to contain a single line of text. This classifier use§thEO G descriptor? ? ], which

is based on the multi-cellistogram of oriented gradien{¢diOG) of Dalal and Triggs [4].
The regions found by SOOPERTEXT are then fed to ESSERACTs back-end for OCR pro-

cessing [5]. See figure 4.
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Figure 4: Overall diagram of theN® OPERTEXT detector (a)—(d) and the OCR step (d)—(e).

Tests show that SOOPERTEXT is comparable or better than other state-of-the-art text
detectors described in the literature?[§ including TESSERACTs front-end, at the task of

identifying the text-containing regions in the images. Hispaper we also evaluate the end-
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to-end performance of the complete system@®PERTEXT with TESSERACTS back-end),
measured by both approximate and exact string matchingeoéxtracted and ground-truth
texts. As a collateral result, we show that we can improveTtBesSERACTfront-end text
detector on street images by using@@PERTEXT's T-HOG-based validation module to
filter out most of its false positives.

The NOOPERTEXT algorithm described and tested here is the 2012 version,rtha
proves on the 2010 version reported at ICIP 2010 [7] in the @ifeeoT-HOG descriptor for
text-region validation and improved values for variouginal parameters.

In section 2 we review the literature on text detectors amtirten-text classification,
with emphasis on urban photos. TheR@PERTEXT detector is described in section 3, and
its experimental evaluation is reported in section 4. Irtiesa® we briefly describe the use

of extracted texts to answer textual queries in the contietkteniTowns project.

2. Previous work

2.1. Text detection

There is an extensive literature on text detection. Theesuof Junget al.[8] and Liang
et al [9] covers some systems up to 2005. Many approachesxXbdeétection are devoted
to specific contexts, such as postal addresses on enveldfjesursive handwriting [11], li-
cense plates [12], etc. For natural scene processing, nreoexig systems have been recently
considered [6, 13, 14, 1].

Recently, some benchmarks [15, 16, 17] and challenges [163 asganized to give a
clear understanding of the current state-of-the-art afinahiscene text detection algorithms.
Basically, two general approaches for text detection haee peoposedbottom-up consist-
ing of character identification by analyzing the structutes make up text letters, such as

edges, textures, colors or connected components, folltyegfouping into texts; antbp-

6



down which look first for text regions, by exhaustively samplswg-regions in the original
image with a sliding window mechanism, and then splittingséhregions into characters.

Itis interesting to note that the two leading systems in B@5ACDAR challenge [16] rely
on different methodologies. The system of Hinnerk Becket (iMnner of the 2005 ICDAR
challenge) is an example of bottom-up solution. It uses aptuk binarization scheme
to extract character regions which are then combined intbliees according to certain
geometrical constraints. Alex Chen et al [18] (second pladhé 2005 ICDAR challenge)
developed a top-down approach that makes use of a stdt@tialysis over regions of the
frame to identify those that are likely to contain text. Thérey use a cascade of classifiers
trained over the chosen features to prune those candidagiess. Finally, those regions are
segmented into which are assumed to be text characters.

Most of the text detection systems for natural scenes hase bealuated in the ICDAR
Challenge dataset since 2005. Four state-of-the-art sgstither top-down or bottom-up,
are briefly discussed in what follows.

In 2007, Mancas-Thillou and Gosselin [13] proposed a toprdoolor-based method, by
clustering similar color together based on the Euclideatadce and a cosine-based similar-
ity, in the RGB color space, for character segmentation atrdeion. The authors did not
focus in the text detection part, they assumed that the égxdns were previously bounded.
They have used intensity and spatial information obtainetldn-Gabor filters to segment
characters into individual components. This approach eg@rto fail in those texts with
similar colors for foreground and background.

In 2010, Epshtein et al [6] proposed a bottom-up approackvkras Stroke Width Trans-
form (SWT) to detect characters in images. They used the greslients orientation over
image edges to determine a “local stroke width” and gathezlpiwith similar stroke widths
into regions which are likely to be characters. In addititwe, authors provided a new anno-

tated benchmark with urban scene images taken with harbeheteras [15].
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In 2011, Chen et al [14] also proposed a bottom-up approack.atithors used a maxi-
mally stable extremal regions (MSER) for edge-enhancenmmenrider to candidate character
detection. The letter candidates were then filtered outgusiroke width information com-
puted by the SWT.

In 2012, Yao et al [1], proposed a bottom-up method to dedstin arbitrary orienta-
tions. The authors have also used the SWT to character eatraoid two layers of filters
based on geometric and statistical properties, as well aesaifier trained with scale and
rotation invariant features to reject non-text charactetsnd by the SWT. The character
grouping was done by considering the stroke propertiesgandetric and color features of
nearby characters. A greedy hierarchical agglomerativeteting method was also applied

to aggregate characters pairs into candidate chains.

2.2. Text classification

Comparatively little has been published about text/non-dtassificationalgorithms, al-
though they are often present as post-filters in many texictimts.

Text classification is often cast as a texture classificgpimblem, and several texture
descriptors have been considered in the literature. Ftaings, in 2004, Kim et al [19] de-
scribed a text recognizer that decomposes the candidatensige into a multiscalé6 x 16
cell grid and compute wavelet moments for each block. Theh block is classified as text
or not using an SVM. The ratio of text to non-text outcomesssduto decide if the entire
sub-region is text or non-text. In 2005, Ye et al [20] desedila similar text recognizer with
multiscale wavelet decomposition but they used more etbdeatures including moments,
energy, entropy, etc. In 2004, Chen and Yuille [21] proposddsxriptor that combines sev-
eral features, including 2D histograms of image intengitg gradient, computed separately
for the top, middle and bottom of the text region, as well asnimre complex slices sub-

divisions of the image—=89 features in total. Recently somedetectors, such as the one
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described by Anthimopoulaost al. in 2010, have used descriptors based on multidoaks
binary patterngLBP) introduced by Ojal&t al.[22]. Their descriptor has 256 features.

The use of gradient orientation histograms as texture gscs was introduced by Dalal
and Triggs in 2005 [4] for the recognition of full-body humsithouettes. Their algorithm
divided the candidate sub-image into a rectangular bi-dsimmal array of cells, computing
a histogram of oriented gradients (HOG) for each cell andcatanating those HOGs into a
single descriptor vector.

HOG-based descriptors have since been used for other abmajnition and tracking
problems [23], including text text/non-text discrimir@tiand detection [24, 25, 26, 27].

In this paper we propose an hybrid scheme combining bottp@Ad top-down strategies.
The text region candidates are found by a generation phasarred out using a bottom-up
approach: starting from a character segmentation, cleattfn and grouping. The validation
phase is based on a top-down strategy, and uses a globaptiesir classify the text regions

candidates returned by the generation phase.

3. Text detection and classification

As shown in figure 4, the SOOPERTEXT detector consists of three main modules: char-

acter detection, letter grouping, and text region valwlati

3.1. Character detection

The structure of SOOPERTEXT’s character detection module is outlined in figure 5. It
consists of three stages: foreground/background imageesggtion, geometric filtering and
letter/non-letter classification. They are described in-sections 3.1.1-3.1.3. These steps

are applied in multi-scale fashion, as described in se@idn
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Figure 5: The letter detection stage oi SOPERTEXT.

3.1.1. Image segmentation

The segmentation algorithm used iIRGOPERTEXT was developed by Fabrizio et al [28].
It is a modified version of Serrat®ggle mapping29], a morphological operator for local
contrast enhancement and thresholding, using morphealbgiosions and dilation®[] to
define the local foreground and background levels.

Specifically, in order to segment the input imdgeve first compute a local background
imageB by grayscale erosion (neighborhood minimum) and a locagmund imagé& by
grayscale dilation (neighborhood maximum), using a sqfaté structuring element. Note
thatB(z,y) < I(z,y) < F(x,y) for every pixelz,y. Then each pixel(z,y) is mapped
to a ternary class valuB(z,y) € {0, 1,2} as follows. If|F(z,y) — B(z,y)| is less than
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a fixed threshold:,;,, thenD(z,y) is set to 1 (indeterminate). OtherwisB(zx,y) is set
to 0 (presumed background) or 2 (presumed foreground) diépgion whether the relative
brightnessl(x, y) —B(z,y)|/|F(z,y) —B(x, y)| is less than or greater than another threshold
t.

Since the thresholding is not symmetrical between dark @it tegions, and target
scenes often have light text on dark background, the segti@mtis repeated on the neg-

ative (pixel-wise complemented) image. See figure 6.
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Ipsw1ch
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(@) (b)

Figure 6: (a) Toggle segmentation of the positive image r@okground (dark gray), foreground (white) and
indeterminate (light gray) pixels. (b) Toggle segmentatibthe negative image.

3.1.2. Geometric filtering
The foreground regions from both segmentations (positng reegative) are filtered by
simple geometric criteria, based on the afeavidth w, and height. of their bounding boxes

(minimal axis-aligned enclosing rectangles). Namely,gisented region is accepted iff

Arnin S A S Amax
Wmin S w S Wmax
hmin S h S hmax

T'min S w/h S T'max
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where A in, Amaxs Wmins, Wmaxs Pmins Pmax, Tmin, @Nd7a, @re internal parameters of the

method.

3.1.3. Letter/non-letter classification

For each box that passes the geometric criteria, the digorixtracts from the corre-
sponding segmented region three scale- and rotationiimtashape descriptors: Fourier mo-
ments, pseudo-Zernike moments, and an original polar emg¢28]. These descriptors are
fed to three separate SVM classifiers, whose numeric ougpatpacked as a three-element
vector and fed to a final SVM classifier [30]. The output of theafiSVM is then thresh-

olded to yield a binary letter/non-letter decision. Seerggu/. These SVM were trained on

Fourier
Descriptor SVM
| Pseudo Zernike
! Moments SVM Yes/No
Polar 1
I Descriptor SVM

Figure 7: The letter/non-letter classifier of the charadetection module.

a dataset of bi-level images selected by hand from the owtpilie segmentation and geo-
metric filtering phases, comprising??7 instances of each uppercase and lowercase letter
(positive samples) and ??7 randomly chosen non-letter segments (negative samdes).

figure 8.

Figure 8: Some of the positive (top) and negative (bottorgjrented shapes used to train the letter/non-letter

classifier.

*[Make the training sample available in the tarball ]
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3.2. Letter grouping

SNOOPERIEXT’s character grouping module joins the candidate lettersddy the char-
acter detector into text regions — which may be either word®xt lines — according to
geometric criteria defined by Retornaz and Marcotegui [31hesSE criteria take into ac-
count the height#,, hy and widthsw;, w, of the two bounding boxes, as well as the coor-

dinates(zy,y;) and(z2, y2) of their centers. See figure 9. Specifically, ke min(hy, ho),

Figure 9: Geometric parameters used for letter grouping.

dy = |v1 — 22| — (w1 + wy)/2 andd, = |y1 — ya|. *[The symbol h,,;, was used for a
parameter of the character detector] Note thatd, is negative iff the two boxes overlap in
the x direction. Then the two boxes are said todmenpatible— that is, assumed to belong

to the same text word or line — iff

’hl—h2| < tlh
d, < tah

dy < tgh

wheret, t, andt; are parameters of the module. The paramgten particular, determines
whether the groups will be words or text lines, whilecontrols whether multiple lines are to

be merged into text blocks.
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These criteria are applied to all pairs of detected charsciehe groups are the equiva-
lence classes of the transitive closure of this compatgtaiélation.

At this stage, letters that were not joined to any group aseaided. This requirement
normally eliminates a large fraction of the false positiy@sn-letter regions classified as let-
ters by the previous steps). Each group is then summarizagingle axis-aligned rectangle,

which is the bounding box of its component letters. See figore

fpswicr] (A 12)

Figure 10: Grouping letters into text words.

The grouping module is applied separately to the candidatesl in each segmentation
(positive and negative). Then the two lists of candidatériegions are merged, and any two
regions that have significant overlap are fused into a sirggleon. The overlap is considered

significant ifx[If what?].

3.3. Multi-scale processing

The segmentation and character/non-character recogmbiases perform rather poorly
if used at a single scale. Text embedded in photos of urbamestey have characters of
widely different sizes and styles. Characters that are marget than the structuring element
used in the morphological thresholding are often over-gegad. To overcome this problem,
those two steps described above are applied in a multi-&xsthéon [32]. At each resolution
level, the segmentation is applied to a reduced version efirtput image, with the goal
of detecting characters of a limited size range, and auticailgtignoring small irrelevant
details of character shape and texture.

More precisely, for each imadeSNOOPERT EXT first builds a multi-scalénage pyramid

10 1M . 10", The basd® of the pyramid is the original image and each level® is
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a copy of the next lower on&'~), reduced to half its width and half its height (so that level
I¥ has1/4' as many pixels as lev&"). The maximum leveh depends on the size of the
original image and the minimum size of the characters to lectid.

The segmentation, character/non-character classificatitd grouping[grouping too?]
steps are applied separately to each level of the pyramiagaéh level, the algorithm only
looks for letters whose areas lie in the rangg,, .. Anax], defined in section 3.1.2, which
corresponds to the size rangéA,.;, .. 4'A,..] in the original image. The parametets;;,
andA,,., are chosen so that there is some overlap between two coivecstdles andl + 1,
namelyA,... > 4A.;,. Similar considerations apply to the linear patametgr, Amax, Wmin,
andw.,. Segmented regions whose area fall outside the intéAval .. A....] are ignored,
since they are expected to be found at other scales. See fiju@ne advantage of the multi-
scale approach is that we can use use a structuring elemixee{and modest) size in each
morphological operation, with significant speed gains. é\ibiat the cost of processing the
whole image pyramid, for letters of any size, is OIE/Z.ZO 1/4" ~ 4/3 times the cost of
processing the original image for letters within the fixexdges of section 3.1.2.

Another advantage of the multi-scale approach is that iten#ike segmentation algorithm
insensitive to letter texture — high frequency details @ much smaller than the letters
themselves. Those details may cause each letter to bedplgaveral separate segments, and
will tend to confuse the the character/non-character iflas3dVith the multi-scale approach,
these problems are largely avoided when the segmentataoegure is applied the scale

where the letters are still legible but those finer detailsetzeen blurred away. See figure 12.

3.4. Text region validation module

The character detection module analyzes only the segmehéedcter shapes in isolation,

and the character grouping module looks only at their baougnioxes. In order to obtain a
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Level O

Level 1

Level 2

Figure 11: Example of multiscale segmentation and lettézadi®n, showing accepted candidate letters (left)

and accepted text lines (right) at each level.

good end-to-end recall score, these two modules must bd toreccept a high rate of false
positives—regions that are mis-identified as charactedsgaouped into spurious text line
candidates. See figure 13. The task a0®PERIEXT’s region validation module is to weed

out these false positives, by analyzing the image conteeioh candidate text region as a
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Figure 12: Example of multiscale segmentation and lettexadieon, illustrating texture suppression at the proper

scale. Note that the letters of ‘SIGNO’ are oversegmentdehigls 0 and 1 but correctly segmented and recog-

nized (black boxes) in level 2.

whole.

This module is basically a texture classifier, based on th¢OG descriptor? ]. The

latter is a variant of Dalal and Triggs’s R-HOG descripto}, [gpecialized to capture the
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Figure 13: Some examples of false positives found by theaciar detection and grouping modules.

gradient distribution characteristic of letter strokesotidental-like scripts. The T-HOG
descriptor is fed to an SVM classifier, whose output is tho&dd to give a binary text/non-
text classification.

The T-HOG descriptor is based on the observation by Chen ailig Y2004) that dif-
ferent parts of Ocidental-like text have distinctive datitions of edge directions [21]. That
is because images that consist of bi-level strokes (such amRé&etters), the orientations of
the strongest gradients tell the orientations of thoséefo

The HOG-based text/non-text discriminators reported @ literature generally use a
two-dimensional array ofy x ny cells, as Dalal and Triggs first used for human body recog-
nition. [4] recognition. The resulting multi-hog descopd, that are often complemented with

other statistics, typically have more than 100 features.t8ele 1

Descriptor Year | ny X ny np | no | N | Notes

Pan et al. [25] 2008 | 2 x 7=14 | ??| ??| 140/ Line
Hanif and Prevost [24] 2009 | ??x?? =16 | 8| 13| 151 | Line
Wang et al. [26] 2009 | 77x7? =28 8| 2| 80| Char/line

*x[Add the rest!] P VI =07 | PP P P77 ??

Table 1: Parameters of some HOG-based descriptors in ¢hatlire, showing the number of columns and rows

in the cell array 6x andny), of histogram bins#y), of other featuresr{,), and of total features\).

The use of a two-dimensional cell array may be justifiabledolated characters, but does
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not seem to be useful for multi-character texts of variabldtlw In such texts, the gradient
distribution is largely independent of horizontal posititherefore, a cell layout with vertical
cuts increases the size of the descriptor without providmgadditional relevant information.
The detailed description of the T-HOG descriptor and iteexpental analysis have been
published separately[]. To obtain the descriptor, the imagelelimited by by the candidate
rectangle is first extracted, converted to grayscale, ddala fixed height{, preserving its
aspect ratio, and normalized for local variations of bmgisls and contrast with a Gaussian
weight window. The sub-image is then divided into a smalldixembern, of horizontal
stripes, and a histogram witly of bins is built for each stripe. Specificaly, the image geadi
is computed at each pixel within the stripe, its directiogusintized into a small numbey,
equal angular ranges, and the corresponding bins of thegihgsth are incremented. Opposite
directions are identified, so each bin7ign,, radians wide. The T-HOG descriptor is the

concatenation of those, histograms. See figure 14. The contribution of each pixehéo t

*[Provide the images and uncomment the tabula}.

Figure 14: Some candidate text images found by the chardetection and grouping modules (left) and the
corresponding T-HOG descriptors (right), computed wih= «[?7] stripes anch, = *[?7] bins. Each round
diagram shows the histogram of gradient orientations infwré&zontal stripe of the candidate images. Each

pair of diametrally opposite black wedges represents deshig of the histogram.

histogram is weighted by the gradient’'s norm, so that thellsgnadients that result from
camera and quantization noise are largely ignored. Bothttipes and the histogram bins
have gradual boundaries in order to minimize the impact aflsvertical shifts and rotations
of the text inside the bounding box.

Indeed, through extensive experimeritd [we confirmed that, for any descriptor length,
the partition into horizontal stripes was generally mofe@ive than a two-dimensional ar-

rangement. Moreover, near-optimal results could be obthwith fairly small descriptors:

19



we are usingy = 7 andn, = 9 in SNOOPERTEXT, but if used instead, = 5 andn, =77
we would reduce the descriptor size to ?? while lowering toees by 1 to 2% [Confirm!].
We also found that pre-scaling the given text region to a kfixeld heightH (currently
24 pixels) was more efective than computing the HOGs at tiggnai resolution. We believe
that this resizing step is a good balance between presenvattiuseful detail and removal of

noise and spurious texture

4. Performance of the text detector

We compared the performance of@OPERTEXT with that of other text detectors pub-

lished in the literature, in their ability to locate textdis.

4.1. Image collections

For our tests, we used three image collections, descridedbEor each of these datasets
we have areference filecontaining the bounding boxes of its legible text regiond Hre
corresponding text contents, in a simple XML format. Thisadaas obtained by human
inspection of the images (as opposed to human readout otthal @igns on the scene).

*[The term “ground truth” comes from the area of aerial image anaysis and means
“data collected by an observer on the ground”, e. g. this areas actually corn field, this
road is paved, etc.. For iTowns that would be a human in the se&et reading the sig-
nage directly. However, for our datasets, the reference filevas derived from the images
themselves. In particular, text that is illegible or occluded in the images is not recorded
in those files. Therefore the term “ground truth” is inappropr iate and misleading. We

must call them “reference files” instead. Or perhaps “truth file”? Or “paragon file™? ]

1. ITW: a subset of the iTowns Project’s image collection [2], ¢stirsg of 100 unpro-

cessed frontal color photos of Parisian fagcades, wWig) x 1920 pixels, as taken by
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the iTowns vehicle. The reference file, contain#dg readable text words, is available
on-line [33].

2. SVT: a public benchmark of 249 urban photos selected from thegledstreet View
images by Wang et al., ranging fron??7 x x[??7 to x[??7 x x[??7 pixels. The the
reference file contains 647 readable worel$. |

3. EPS: the benchmark used by Epshtein et al [6], vd€fT color images of urban scenes,
ranging from1024 x 768 to 1024 x 1360 pixels, taken with hand-held cameras. The
reference file, containing981 readable text lines, was provided by the authors [15]
and converted to XML by us [33].

4. | CD: the “testing” half of the 2005 ICDAR Challenge collection [16onsisting of
249 color images, ranging fror07 x 93 to 1280 x 960 pixels, captured with various
digital cameras, of book covers, road signs, posters, ¢te.r@ference file, containing

1107 readable text words, was provided by the Challenge orgamizer

ThelCD collection is not very appropriate for our purposes, sirtansed texts are quite
different from photos of storefront signage in many wayscksas sharpness, brightness,
contrast, angle of view, font variety, and the frequencyamflasions). We included it because
it is a popular benchmark for text detection, and it is theyamle for which we have reliable

data on the performance of other detectors.

4.2. Parameter settings

In all tests the SOOPERTEXT parameters were set as follows:

*[Specify range ofc,,i,: [0-1] or {0..255}7]

The t, parameter (maximum relative letter spacing) was set @ifféy for each dataset
so that characters would be grouped in the same way as in tresponding reference file:

namely, into words fofTW andICD, and into lines for Ephstein
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Parameter ITW | SVT EPS| ICD
Character detection module
Min constrast:,,;, 8/256 | x[?7] | 12/256| 8/256
Relative threshold 0.79
Min areaA, i, (px?) «[?27] | *[?7] | *[?7] | ¥[?7]
Max aread, .. (px?) «[?27 | *[?7] | *[?7] | ¥[?7]
Min width w,.;, (px) «[?27 | *[?7] | *[?7] | ¥[?7]
Max width wy,.x (px) 2?27 | *[?7] | *[?7] | %[?7]
Min height i (px) «[?7] | *[?7] | +[?7] | *[?7]
Max heighth.x (px) «[?7 | *[?? | +[?7 | *[?7]
Min aspectr,;, *[?7] | *[??] | +[?7 | *[?7]
Max aspect,.x «[?27] | *[?7] | *[?7] | %[?7]
Image pyramid height: K27 [ A[?7 | «[?7] | +[?7]
Character grouping module
Max height difference, 1.10
Max X separatiort, 0.40 | x[?7] 0.80| 0.40
Max Y offsetts 0.70
Region validation module
Extracted image heigh (px) 24
Number of cellsqy 7
Bins per histogramy, 9

Table 2: NOOPERTEXT parameter settings used for each test dataset.

was found by cross-validation.
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*[Confirm that the T-HOG paper specifies the normalization blur radius as a func-
tion of H.] The 63-feature T-HOG is an overkill: texts with 20 features|3 x 7 ?] resulted
in F'-scores onlyl to 2% lower than those reported below. The SVM of the region véilia
module was trained with the true and false positives regiepsrted by the character detec-
tion and grouping modules ofN® OPERTEXT, when applied to the “training” subset of the
ICD image dataset. The T-HOG SVM used a Gausgiakernel, whose standard deviation



4.3. Competing detectors

We compared SOOPERTEXT against several state-of-the-art text detectors destnbe
the literature. Specifically, we compared it with the cotaets of the ICDAR Challenge [18],
and also with the detectors of Epshtein et al. [6], H. Chen.dlL4] and Yao et al [1]. (The
system of Mancas-Thillou and Gosselin [13] uses the tex@alet of Alex Chen, which is
included in our set.)

We added to our list of competing text detectors the fromt-srodule of the popular
open-source ESSERACTOCR software (ESS-RONT), whose task is to locate the candidate
text regions in the input image before calling the back-eRESE-RONT) to parse them.
TESSERACTIS considered one of the best OCRs available today [5]; howésdront-end
was designed for scanned documents, and it usually reptatgeanumber of false positives
when applied to photos of 3D scenes. See figure 18 (top). Tdrereve also added to our
list of competing detectors the combination ce S-RONT with the T-HOG as an output
filter (TESFRONT+T-HOG). See figure 18 (bottom).

*[We want to publish SnooperText as open free softwarg.

4.4. Rectangle-based performance metrics

The guantitative criteria we used to compare these texttateystems are based on the

ICDAR 2005 measure of similarity [18] between two rectangles defined as

m(r,s) = (1)

where A(t) is the area of the smallest rectangle enclosing the.s@he functionm(r, s)
ranges betwee (if the rectangles are disjoint) arid(if they are identical). See figure The
functionm is extended to a set of rectanglg®y the formula

m(r,S) = max m(r, s) (2)

seS
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r.ocr = TACO
s.ocr = TACO
m = 0,34 (Rect. score)|
m'= 1,00 {OCR rig.)}
m'= 1

,00 {OCR tol.}

m =
m'= 0,00 {OCR rig.)
m"= 0,23 {OCR tol.})

00 {OCR rig.)
,40 {OCR tol.)

r.ocr = LATE
r.ocr = BELL s.ocr = LATE
s.ocr = BEL m = 0,92 (Rect. score)
= 0,83 [(Rect. score) m'= 1,00 {OCR rig.)
m'= 0,00 (OCR rig.) m"= 1,00 {OCR tol.}
m"= 0,75 {(OCR tol.}

.OCF = uuuwarnu
m = 0,59 (Rect. score)
0,00 {OCR rig.}
0,57 [OCR tol.)

Figure 15: The rectangle similarity scowe(r, s) for various text regions detected by SOOPERTEXT (solid

outlines) and the best-matching regionfson the reference file (dashed).

From this indicator one derives the ICDARRecisionP andrecall R scores [18],

Zm(r, T) Zm(r, E)

rel _reT

whereT is the set of rectangles in the reference file, &b the set of rectangles reported
by the detector.
For ranking purposes, the ICDAR 2005 Committee usedFhmeasurd18], which is

the harmonic mean of precision and recéll=2/(1/P + 1/R).

4.5. Computing average scores

There are several ways of averaging thelz, andF’ scores over a multi-image database.
The approach used by the ICDAR 2005 scoring program (methisdd) evaluate”, R and
F separately for each image, and then compute the arithme@mraf all three scores over

all images. Another approach (method Il) is to comphbtand R for each image, then take
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the arithmetic means of alf and R values, and comput# from these means. Yet another
approach (method Ill) is to compute the precision and rdoathulas ( 3) by takingz and

T as the union of all text regions in all images. We note thatayieg method | suffers
from higher sampling noise and a negative bias comparecetottier two, because it gives
equal weight to each image irrespective of the number ofweredle text objects in it and
the F'-score is a non-linear function of tHféand R rates. In particular, the averagétscore
tends to be lower than the harmonic mean of averdgedd R.

This point must be considered when comparingalues reported by different authors,
since it is not always clear how they were averaged. Thesefimr our comparisons we
recomputed the overdl score ourselves, for all detectors, from the reported ¢léband R
scores (method II). We could not use method Il because, fistrompetitors, the required

data (the set of rectangles detected in each image) was aitdlze.

4.6. Results of text detection evaluation

The text detection scores on the three image collectionshemen in tables 3—6. For most
text detectors, neither the program nor the detected reguemne available; therefore, we had

to rely on the scores reported by the authors.

Detection scores

System P R F

SNOOPERIEXT 0.72] 0.50| 0.59
TESFRONT+T-HOG | 0.30| 0.13] 0.18
TESERONT 0.05| 0.15| 0.07

Table 3: Text detection scores oRSOPERIEXT and other detectors on thiEW dataset.

*[The F-score of Yiet al. was recomputed accoding to averging method Il in order

to match the other entries; reported 0.66 (method 1?).
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Detection scores

System P R F

SNOOPERITEXT 0.36| 0.51| 0.42
Neumanret al.[? ] 0.19] 0.33| 0.26
TESERONT+ T-HOG || 0.15] 0.15| 0.15
TESSFRONT 0.04| 0.18| 0.06

Table 4: Text detection scores oRSOPERIEXT and other detectors on ti8/T dataset.

Detection scores

System P R F

SNOOPERTEXT 0.59| 0.47| 0.52
Epshteiret al. [6] 0.54| 0.42| 0.47
TESFRONT+T-HOG || 0.21| 0.10| 0.13
TESSRONT 0.02| 0.14| 0.04

Table 5: Text detection scores oRSOPERTEXT and other detectors on tiiP Sdataset.

4.7. Discussion

As can be seen in tables 3-6, the performanceNtd &PERTEXT is equal to that of the
best detectors described in the literature, and much bibterthat of ESSFRONT (which
was not designed for photos of outdoor scenes). Filteriagthiput of TESSFRONT through
our text region validation module significantly improvesl recision with little loss of recall.
Note, in table??, that SNOOPERTEXT outperformed the Stroke Width Transform (SWT) [6]

of Epshtein et al. on their own dataset.

5. End-to-end performance

We also measured the correctness of the strings extracted tlle SIOOPERTEXT-

detected regions by the OCR algorithm used in the iTowns egimin. Although the latter
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Detection scores

System P R F
Yietal.[?] 0.73| 0.67| 0.70
Panet al.[? ] 0.67| 0.70| 0.69
SNOOPERTEXT 0.73| 0.61| 0.67
Yaoet al.[1] 0.69| 0.66| 0.67

H. Chenetal.[14] | 0.73| 0.60| 0.66
Epshteiret al. [6] 0.73| 0.60| 0.66
Hinnerk Beckef 0.62| 0.67| 0.64

Alex Cheri 0.60| 0.60| 0.60
Ashidd 0.55| 0.46| 0.50
HWDavid' 0.44| 0.46| 0.45
Wolff 0.30| 0.44| 0.36
Qiang Zhu 0.33| 0.40| 0.36
TESFRONT4+T-HOG || 0.35] 0.27 | 0.30
Jisoo Kim 0.22| 0.28| 0.25
Nobuo Ezaki 0.18| 0.36| 0.24
TESSRONT 0.18| 0.29| 0.22
Todoran 0.19| 0.18| 0.19

Table 6: Text detection scores oNSOPERTEXT and other detectors on th€D dataset. The competitors of
the ICDAR 2003 and 2005 challenges are marked uith

is not part of SIOOPERTEXT, we felt that this evaluation was necessary to confirm that th
detector was adequate for the task (for example, that thédetemding boxes are neither too
small or too large).

For these tests, we use@&3SERACTs back-end (ESEBACK), the module that attempts
to parse the strings supposedly contained in the regiomsifiéel by the front-end.

We could not compare MDOPERTEXT to the text detectors described in the literature
(see section 4.3), since the implementations were notadolaibnd the authors did not report

their OCR performance. Therefore, we considered only tHteenative algorithms, namely:
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the “perfect” detector @EAL), that returns the manually annotated text regions from the
reference file; ESSERACTs front-end module (ESS-RONT); and that same module with its
output filtered by 8O0OPERTEXT’s region validation module (ISFRONT+T-HOG). See

figure 19 (top).

5.0.1. OCR-based performance metrics

For these comparisons, we used two scoring functions thatitdo account the cor-
rectness of the OCR-extracted text. Both functions assumehatrings are converted to
lower case, because it is often impossible to tell whethexi(for example, “COW’S VOX
UVWXZ” x[better example?) in urban signage is in upper or lower case.

We assume that the OCR algorithm attaches the extracteddenied by-.ocr, to the
given rectangle. We define theigorous OCR similarity score:’ for two rectangles ands

as
1 if m(r,s) > X\ and r.ocr = s.ocr

m/(r,s) = (4)
0 otherwise
wherem is the rectangle similarity function defined in equation é)d )\ is a fixed threshold
(0.2 in our tests).

The scoring functionn’ may be considered too rigorous, because at the currentaftate
the art one cannot expect that an OCR algorithm will correetd store and product names
which are missing from its spell-checking dictionary. Téfere, we also definedtalerant
OCR similarity scoren” that gives credit for partially correct OCR readings; namely

1 dist(r.ocr, s.ocr) if m(r,s) > A
max(|r.ocr|, [s.ocr]) ©

m”(r,s) =
0 otherwise

Here|u| denotes the length of string anddist denotes the Levenshtein distance between
strings [34]. The latter is defined as the minimum number @faukrations needed to trans-

form one string into the other, where each operation is thertion, deletion, or substitution
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of a single character. Since the Levenshtein distance diexoeed the length of the longest
string, the metrien”(r, s) ranges betweei(when the strings have no letters in common) and
1 (when the strings are equal).

As in section 4.4, we extend the scoring functiohto a set of OCR-scanned rectangles
S by the formula

m/(r,S) = max m/(r, s) (6)

We then define theigorous OCR performance scoré¥ (precision) andR?’ (recall) by the

Z m/(r,T) Z m'(r, E)

P/ _ rekb R/ _ reT 7

whereT is the set of manually identified text regions in all input gea, with theocr fields

formulas

set to the visually extracted text values, as recorded imeafezence file; and is the set of
text regions reported by the detector, with thesEBACK-computedocr fields. As before,
we combine the OCR precision and recall into a single OCR sEbre 2/(1/P' + 1/R').
Thetolerant OCR performance scoré¥ R’, andl"” are defined in the same way, using
instead of’ in formulas (6-7).

Figure??illustrates the metrics: (equation 1)’ (equation 4) andn” (equation 5) on
some text regions reported bwSOPERTEXT.

*[Split into two figures, RECT and OCR?] x[Too many exaampleg!

5.1. Results of OCR correctness evaluation
5.2. Discussion

Table 7 shows that the rigorous OCR scdteof SNOOPERIEXT on thelTW dataset
(20%), while low in absolute terms i88% of the score obtained wittDEAL text detector,
(29%). The tolerant OCR scoré” of SNOOPERTEXT (40%) is 80% of the IDEAL score

(50%). In both aspects, SOOPERTEXT is significantly better that ESSERACTs front end,
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N N Az T————— —————
fr.ocr = DARJEELING
s.0cr = DAR]EELING

0,97 (Rect. score)

0,00 {OCR rig.}

0,70 {OCR tol.}
LiBDENIT

Figure 16: The OCR similarity scores’(r, s) andm” (r, s) for x[check namesr, s] various text regions

L&

r.ocr = LE

s.0cr = LE

,91 [(Rect. scor
,00 {OCR rig.)

00 {OCR tol.}

m

m'

m"
!

,

,00 [OCR rig.)

.40 (OCR tol.) : o Egg;t'risgc';re)

,78 {OCR tol.})

extracted by SO00OPERTEXT+TESBACK (solid outlines), and the best-matching regiansom the human-

produced reference file (dashed).

OCR scores
Rigorous Tolerant
System P | R | F | P | R | F
IDEAL 0.29]| 0.29| 0.29| 0.50| 0.50| 0.50

SNOOPERIEXT 0.221 0.18| 0.20| 0.43| 0.37| 0.40
TESFRONT+ T-HOG || 0.28] 0.03| 0.06| 0.45| 0.07| 0.12
TESEFRONT 0.01| 0.05| 0.01| 0.01| 0.10]| 0.03

Table 7: OCR performance scores of theSEERACTback-end with the three text detectors onlfi\¢/ dataset.

OCR scores
Rigorous Tolerant
System P | R | F P" | R" | F”
IDEAL 0.22] 0.22| 0.22| 0.40| 0.40| 0.40

SNOOPERTEXT 0.13| 0.20| 0.16 0.21| 0.34| 0.26
Neumanretal.[? ]
TESFRONT+ T-HOG | 0.46| 0.06| 0.11| 0.57| 0.11| 0.18
TESSFRONT 0.01] 0.07| 0.02| 0.01| 0.12| 0.02

Table 8: OCR performance scores of thesBERACTback-end with the three text detectors on\ET dataset.
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OCR scores

Rigorous Tolerant
System P | R | F P" | R" | F”
IDEAL 0.10] 0.10| 0.10| 0.25| 0.25| 0.25

SNOOPERTEXT 0.06| 0.05]| 0.05| 0.24| 0.18| 0.21
TESEFRONT+ T-HOG || 0.24| 0.01| 0.01 | 0.38| 0.03| 0.06
TESSFRONT 0.00| 0.01]| 0.00| 0.01| 0.04| 0.01

Table 9: OCR performance scores of thesSEERACTback-end with the three text detectors onHirSdataset.

OCR scores
Rigorous Tolerant
System P’ R | F P | R" | F”
IDEAL 0.4410.44| 0.44| 0.55| 0.55] 0.55

SNOOPERIEXT 0.41|0.29| 0.34| 0.57| 0.42| 0.49
TESFRONT+ T-HOG | 0.58| 0.12| 0.19| 0.75| 0.17| 0.28
TESSRONT 0.04] 0.16] 0.06 || 0.05| 0.22] 0.08

Table 10: OCR performance scores of thesEERACTback-end with the three text detectors on to®

dataset.

even when the latter is combined with the T-HOG validatiordaoie. Therefore, we can say
that the OCR algorithm, not the text detector, is the maindrmtck of the iTowns system at
present.

Note that the OCR precision scorsand P’ of SNOOPERTEXT are close to (or even
better than) those of the®EAL text detector, because regions in the refererence file that a
difficult for TESBACK tend to be missed byN®OPERTEXT. See figure 17.

The low OCR scores on tHePSdataset (tabl@?), even with the bEAL text detector, are
partly explained by the lower image quality and the smaliee sf the texts included in its

reference file, which even humans find hard to read. See figuréndeed, 252 text regions
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Figure 17: Examples of tougher text regions for text detscémd OCRs. Samples from thBW andEPSs

datasets.

(about13%) in the reference file do not even have a string annotatiodh tlaerefore will be
counted as errors even with an ideal OCR algorithm.

On thelTW andEPSdatasets{confirm datasetd, most of SNOOPERTEXT errors seem
to be due to texts that are near the low limit of legibility @in size, blurred, partly ob-
scured by noise) and to groups of two or more characters #ratat be separated by the
segmentation phase.

The OCR precision scord® and P” of SNOOPERTEXT+TESSBACK are comparable to

those of bEAL+TESSBACK chiefly because[what?] See figure??.

6. Geographic Information System

*[In a journal paper it is not appropriate to describe work that is only planned or
tentative. Thus we must be careful to describe only those pastof the iTowns system
that are reasonably stable and have been deployed — specifilya the version that is
available to outside userg.

*[We must specify the size of the system, current and planned:itees and neigh-
borhoods covered, number of cars, length of streets coveredumber of pictures taken,
number of strings in the database. If possible, give the prest, planned, and per-day
numbers]

*[Since the goal is to help users, not demonstrateN® OPERT EXT, there should be

manual filtering of the extracted strings. Signs like OPEN orSALE, or text extracted
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TESSBACK

M

ill

=l iQ \-C

;|| TE5 FRANCO-ITALIENNES - -
Il E - 5.

A, AfFFT2 «
|| LHARGE CAFFL;

TESSBACK

TE5
FRANCO-ITALIENNES
|| CHARGE

/|| CAFFE

Figure 18: Examples of theEBS-RONT detector output (top) andeEBSFRONT with T-HOG post filter (bot-
tom). At left, the input image with the detected regions higiited. At right the OCR (ESSBACK) output for

those text regions.
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EBBACK

H3
MONTE
|| CHARGE
. || CAFFE
|| TE5
|| FRANCO
|| ITALIENNES
| win
WE

TESSBACK

H3

MONTE
CHARGE

. || CAFFE

|| TE5
FRANCO

|| ITALIENNES

Figure 19: Examples of the reference text regions (top) bedt0OPERTEXT detection (bottom). At left, a
crop of the input image with the detected regions highlight&t right the OCR (ESSBACK) output for those
text regions. The correct readings of the reference regio#is'143", “MONTE”, “CHARGE" (2x), “CAFFE”
(2x), “TES”, “FRANCO” and "ITALIENNES".

from trucks and people’s T-shirts would be worse than useles Ditto for gross errors or

34



F

Figure 20: Examples of text regions in tB®Sreference file without textual annotation.

truncated words. Also, it would be desirable to tag each textvith basic attributes such
a “store name” (RED ROSE RESTAURANT), “product/service” (F ISH BAIT ), “telephone
number”, “operational information” (H OME DELIVERY ), “marketing hype” (B ETTER

THAN APPLE PIE), etc. Is any such filtering/tagging being doneJ?

*[Also | expect that the strings extracted by SIOOPERTEXT will be merged with

other sources of text annotations such as existing streetréictories. Is that the casep

*[Also | expect that there will be some supervision of the imagstitching procedure

to avoid gross errors due to moving objects and the liké.

*[From the examples given earlier, one may assume thalN® OPERT EXT is applied
to every raw image acquired by every camera in the car. Howevethat would require
matching and merging the extracted strings, removing dupkates, and obtaining suffi-
ciently accurate street address and/or GPS coordinates ofeh string. Does not seem a
simple task, even with human assistance. So my guess is thfat; the iTowns database,
SNOOPERTEXT is run only on the “frontal” images (taken by the cameras thatpoint 90
degrees to the road axis), and only after those images havedrestitched into mosaics
spanning entire city blocks, from one street intersectiona the next (so that every sore
name is entirely in one image, and its address and coordinagecan be easily computed

from its position on the image). Is this guess correcf?

The iTowns: project [2] has two main goals: (1) allowing arusenavigate freely within
the image city flow (mosaic of pictures assembled into a cetepmmersive panorama); (2)

extracting features automatically from this image flow ttoauatically enhance cartographic
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databases and to allow the user to make high level queriebeim {as for example, go
to a given address, generate relevant hybrid text-imaggai@en maps (itinerary), find the
location of an orphan image, select the images that contembgect, etc). The city images are
processed offline to extract as many semantic data as p@ssililthe cartographic databases
are enhanced with these data.

The textual information is extracted by thel@OPERTEXT and the ESSERACTOCR
and stored. Thus, each image is represented by a set of watriatg§). The user can then
makes textual queries to retrieve images semanticallwagteto him. The text query is
then matched against each word of the database, by comghgngevenshtein distance.
Both OCR metrics discussed in the experiments can be usedb&ech.image containing a
(partial) matching word is considered as relevant to theyguehe figure 21 shows other two

different city locations for the same textual query “susshbwn in figure 2.

Figure 21: City locations of a search for the query stringstguthrough the iTowns user interface. The textual

information was extracted withN®OPERTEXT and TESSBACK.

7. Conclusions

The combination of our SOOPERT EXT detector with a standard OCR algorithmEIBACK)
is being effectively used in the iTowns project to extraotstsignage and other textual infor-

mation from photos building faades. These strings makesisipte for iTowns users to locate
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stores by textual queries on store names and products. On@esaf the iTowns images,
SNOOPERTEXT was able to accurately locate ab&0t of the legible text regions, with less
than30% of false positives.

We attribute SIOOPERTEXT'S success mainly to the use of multi-scale processing for
segmentation an character detection, and to its effeaiter¢gion validation module based
on the T-HOG descriptor.

At present, the weakest spot in the iTowns text extracti@iesy is the OCR algorithm,
that yields the correct string only0% of the time even when provided with an accurate
bounding box. For this reason, the end-to-end recall scbtlkeosystem (BOOPERIEXT
plus TESBACK) is only 18%, with 22% precision.

SNOOPERTEXT can also accurately locat®% of the text regions present the ICDAR
Challenge benchmark, with less thao; false positives. It is therefore competitive with
state-of-the-art text detectors.

For photos of urban scenesiSOPERTEXT is also significantly better thanEESERACTS
built-in text detector, that achieves only% recall with ands% precision (0r30% precision

if combined with SI0OPERTEXT’s T-HOG-based validator.)
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