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1. Introduction

The detection of text embedded in images or videos of urban scenes is a challenging

problem in computer vision [1] with many potential applications, such as traffic monitoring,

geographic information systems, road navigation, and scene understanding. Here we consider

one particular application, the iTowns project [2], which aims to build tools for resource

location and immersive navigation in urban environments, similar to that of Google’s Street

View [3]. The main raw data for the iTowns project is a collection of GPS-tagged high-

resolution digital photos of building façades, taken witha set of car-mounted cameras. The

mean viewpoint spacing between photo sets is about one meter. See figure 1.

Figure 1: Imaging vehicle and example of an urban scene imagecaptured by the iTowns project.

The raw images obtained by the car are stitched into geo-referenced mosaics, each one com-

prising frontal views of the faades of all building on one side of the a street between consec-

utive street intersections. See figure??. These mosaics are then processed offline to extract

any legible textual information, such as street and traffic signs, store names, and building

numbers. The extracted strings are then stored in a geo-referenced database, which is used

to answer textual queries by users—for example, to locate the addresses of stores with a

specified name or selling a specified product. See figure 2.

2



Figure 2: Result of a search for the query string “sushi” through the iTowns user interface. The textual informa-

tion was extracted with our text detection system.

The iTowns project could⋆[Could, or did? What is the current state of the image

collection effort?] easily generate hundreds of thousands of such mosaics in a single city.

The manual annotation of all these images with the visible textual information would be very

time consuming and probably impractical. Clearly, automated algorithms for this task are

highly desirable.

The difficulties in this task mainly come from the diversity of the texts (including extreme

text size and font variations, and tilted or curved baselines), the complexity of the back-

grounds (including many vaguely text-like objects such as fences, windows, cobblestones,

etc) and difficult illumination conditions. OCR algorithms designed for scanned documents

perform very poorly on such photos. See figure 3(a). Much better results are obtained by

applying an OCR algorithm to the output of a text detector designed specifically for such

images, as illustrated in figure 3(b).

⋆[Say this somewhere:]We are not considering vertical aligned text regions.⋆[But ver-
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tical text is very important for the iTowns project, no?]
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Figure 3: (a) A store-front photo from the iTowns image base and the output of the TESSERACTOCR software

applied over the whole image. (b) Text line regions identified by our detector and the output of the back-end of

the TESSERACTOCR software applied to those regions.

In this paper, we describe SNOOPERTEXT, the text detector we developed for the iTowns

project. SNOOPERTEXT initially locates candidate characters by using image segmentation
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and a shape-based character/non-character binary classifier. The candidate characters found

in this step, represented by their bounding boxes, are then grouped by simple geometric cri-

teria to form either candidate words or candidate text lines. These steps are performed in

a multi-scale fashion, in order to efficiently handle widelydifferent character sizes and to

suppress irrelevant texture details inside the characters. Finally, the candidate text regions are

validated by a binary text/non-text classifier, that rejects any candidate region that does not

seem to contain a single line of text. This classifier uses theT-HOG descriptor [? ? ], which

is based on the multi-cellhistogram of oriented gradients(HOG) of Dalal and Triggs [4].

The regions found by SNOOPERTEXT are then fed to TESSERACT’s back-end for OCR pro-

cessing [5]. See figure 4.
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Figure 4: Overall diagram of the SNOOPERTEXT detector (a)–(d) and the OCR step (d)–(e).

Tests show that SNOOPERTEXT is comparable or better than other state-of-the-art text

detectors described in the literature [6? ], including TESSERACT’s front-end, at the task of

identifying the text-containing regions in the images. In this paper we also evaluate the end-
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to-end performance of the complete system (SNOOPERTEXT with TESSERACT’s back-end),

measured by both approximate and exact string matching of the extracted and ground-truth

texts. As a collateral result, we show that we can improve theTESSERACTfront-end text

detector on street images by using SNOOPERTEXT’s T-HOG-based validation module to

filter out most of its false positives.

The SNOOPERTEXT algorithm described and tested here is the 2012 version, that im-

proves on the 2010 version reported at ICIP 2010 [7] in the use of the T-HOG descriptor for

text-region validation and improved values for various internal parameters.

In section 2 we review the literature on text detectors and text/non-text classification,

with emphasis on urban photos. The SNOOPERTEXT detector is described in section 3, and

its experimental evaluation is reported in section 4. In section 6 we briefly describe the use

of extracted texts to answer textual queries in the context of the iTowns project.

2. Previous work

2.1. Text detection

There is an extensive literature on text detection. The survey of Junget al. [8] and Liang

et al [9] covers some systems up to 2005. Many approaches for text detection are devoted

to specific contexts, such as postal addresses on envelopes [10], cursive handwriting [11], li-

cense plates [12], etc. For natural scene processing, more generic systems have been recently

considered [6, 13, 14, 1].

Recently, some benchmarks [15, 16, 17] and challenges [16] were organized to give a

clear understanding of the current state-of-the-art of natural scene text detection algorithms.

Basically, two general approaches for text detection have been proposed:bottom-up, consist-

ing of character identification by analyzing the structuresthat make up text letters, such as

edges, textures, colors or connected components, followedby grouping into texts; andtop-
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down, which look first for text regions, by exhaustively samplingsub-regions in the original

image with a sliding window mechanism, and then splitting those regions into characters.

It is interesting to note that the two leading systems in the 2005 ICDAR challenge [16] rely

on different methodologies. The system of Hinnerk Becker [18] (winner of the 2005 ICDAR

challenge) is an example of bottom-up solution. It uses an adaptive binarization scheme

to extract character regions which are then combined into text lines according to certain

geometrical constraints. Alex Chen et al [18] (second place in the 2005 ICDAR challenge)

developed a top-down approach that makes use of a statistical analysis over regions of the

frame to identify those that are likely to contain text. Then, they use a cascade of classifiers

trained over the chosen features to prune those candidates regions. Finally, those regions are

segmented into which are assumed to be text characters.

Most of the text detection systems for natural scenes have been evaluated in the ICDAR

Challenge dataset since 2005. Four state-of-the-art systems, either top-down or bottom-up,

are briefly discussed in what follows.

In 2007, Mancas-Thillou and Gosselin [13] proposed a top-down color-based method, by

clustering similar color together based on the Euclidean distance and a cosine-based similar-

ity, in the RGB color space, for character segmentation and extraction. The authors did not

focus in the text detection part, they assumed that the text regions were previously bounded.

They have used intensity and spatial information obtained by Log-Gabor filters to segment

characters into individual components. This approach is prone to fail in those texts with

similar colors for foreground and background.

In 2010, Epshtein et al [6] proposed a bottom-up approach known as Stroke Width Trans-

form (SWT) to detect characters in images. They used the pixelgradients orientation over

image edges to determine a “local stroke width” and gather pixels with similar stroke widths

into regions which are likely to be characters. In addition,the authors provided a new anno-

tated benchmark with urban scene images taken with hand-held cameras [15].
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In 2011, Chen et al [14] also proposed a bottom-up approach. The authors used a maxi-

mally stable extremal regions (MSER) for edge-enhancement in order to candidate character

detection. The letter candidates were then filtered out using stroke width information com-

puted by the SWT.

In 2012, Yao et al [1], proposed a bottom-up method to detect texts in arbitrary orienta-

tions. The authors have also used the SWT to character extraction and two layers of filters

based on geometric and statistical properties, as well as, aclassifier trained with scale and

rotation invariant features to reject non-text charactersfound by the SWT. The character

grouping was done by considering the stroke properties, andgeometric and color features of

nearby characters. A greedy hierarchical agglomerative clustering method was also applied

to aggregate characters pairs into candidate chains.

2.2. Text classification

Comparatively little has been published about text/non-text classificationalgorithms, al-

though they are often present as post-filters in many text detectors.

Text classification is often cast as a texture classificationproblem, and several texture

descriptors have been considered in the literature. For instance, in 2004, Kim et al [19] de-

scribed a text recognizer that decomposes the candidate sub-image into a multiscale16 × 16

cell grid and compute wavelet moments for each block. Then each block is classified as text

or not using an SVM. The ratio of text to non-text outcomes is used to decide if the entire

sub-region is text or non-text. In 2005, Ye et al [20] described a similar text recognizer with

multiscale wavelet decomposition but they used more elaborate features including moments,

energy, entropy, etc. In 2004, Chen and Yuille [21] proposed adescriptor that combines sev-

eral features, including 2D histograms of image intensity and gradient, computed separately

for the top, middle and bottom of the text region, as well as for more complex slices sub-

divisions of the image—89 features in total. Recently some text detectors, such as the one
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described by Anthimopouloset al. in 2010, have used descriptors based on multiscalelocal

binary patterns(LBP) introduced by Ojalaet al. [22]. Their descriptor has 256 features.

The use of gradient orientation histograms as texture descriptors was introduced by Dalal

and Triggs in 2005 [4] for the recognition of full-body humansilhouettes. Their algorithm

divided the candidate sub-image into a rectangular bi-dimensional array of cells, computing

a histogram of oriented gradients (HOG) for each cell and concatenating those HOGs into a

single descriptor vector.

HOG-based descriptors have since been used for other objectrecognition and tracking

problems [23], including text text/non-text discrimination and detection [24, 25, 26, 27].

In this paper we propose an hybrid scheme combining bottom-up and top-down strategies.

The text region candidates are found by a generation phase — carried out using a bottom-up

approach: starting from a character segmentation, classification and grouping. The validation

phase is based on a top-down strategy, and uses a global descriptor to classify the text regions

candidates returned by the generation phase.

3. Text detection and classification

As shown in figure 4, the SNOOPERTEXT detector consists of three main modules: char-

acter detection, letter grouping, and text region validation.

3.1. Character detection

The structure of SNOOPERTEXT’s character detection module is outlined in figure 5. It

consists of three stages: foreground/background image segmentation, geometric filtering and

letter/non-letter classification. They are described in sub-sections 3.1.1–3.1.3. These steps

are applied in multi-scale fashion, as described in section3.3.
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Figure 5: The letter detection stage of SNOOPERTEXT.

3.1.1. Image segmentation

The segmentation algorithm used in SNOOPERTEXT was developed by Fabrizio et al [28].

It is a modified version of Serra’stoggle mapping[29], a morphological operator for local

contrast enhancement and thresholding, using morphological erosions and dilations [? ] to

define the local foreground and background levels.

Specifically, in order to segment the input imageI, we first compute a local background

imageB by grayscale erosion (neighborhood minimum) and a local foreground imageF by

grayscale dilation (neighborhood maximum), using a square9× 9 structuring element. Note

that B(x, y) ≤ I(x, y) ≤ F(x, y) for every pixelx, y. Then each pixelI(x, y) is mapped

to a ternary class valueD(x, y) ∈ {0, 1, 2} as follows. If |F(x, y) − B(x, y)| is less than
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a fixed thresholdcmin, thenD(x, y) is set to 1 (indeterminate). Otherwise,D(x, y) is set

to 0 (presumed background) or 2 (presumed foreground) depending on whether the relative

brightness|I(x, y)−B(x, y)|/|F(x, y)−B(x, y)| is less than or greater than another threshold

t.

Since the thresholding is not symmetrical between dark and light regions, and target

scenes often have light text on dark background, the segmentation is repeated on the neg-

ative (pixel-wise complemented) image. See figure 6.

(a) (b)

Figure 6: (a) Toggle segmentation of the positive image intobackground (dark gray), foreground (white) and

indeterminate (light gray) pixels. (b) Toggle segmentation of the negative image.

3.1.2. Geometric filtering

The foreground regions from both segmentations (positive and negative) are filtered by

simple geometric criteria, based on the areaA, widthw, and heighth of their bounding boxes

(minimal axis-aligned enclosing rectangles). Namely, a segmented region is accepted iff

Amin ≤ A ≤ Amax

wmin ≤ w ≤ wmax

hmin ≤ h ≤ hmax

rmin ≤ w/h ≤ rmax
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whereAmin, Amax, wmin, wmax, hmin, hmax, rmin, andrmax are internal parameters of the

method.

3.1.3. Letter/non-letter classification

For each box that passes the geometric criteria, the algorithm extracts from the corre-

sponding segmented region three scale- and rotation-invariant shape descriptors: Fourier mo-

ments, pseudo-Zernike moments, and an original polar encoding [28]. These descriptors are

fed to three separate SVM classifiers, whose numeric outputsare packed as a three-element

vector and fed to a final SVM classifier [30]. The output of the final SVM is then thresh-

olded to yield a binary letter/non-letter decision. See figures 7. These SVM were trained on

SVM

SVM

SVM

SVM

Fourier
Descriptor

Pseudo Zernike
Moments

Polar
Descriptor

Yes/No

Figure 7: The letter/non-letter classifier of the characterdetection module.

a dataset of bi-level images selected by hand from the outputof the segmentation and geo-

metric filtering phases, comprising⋆[???] instances of each uppercase and lowercase letter

(positive samples) and⋆[???] randomly chosen non-letter segments (negative samples).See

figure 8.

Figure 8: Some of the positive (top) and negative (bottom) segmented shapes used to train the letter/non-letter

classifier.

⋆[Make the training sample available in the tarball.]
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3.2. Letter grouping

SNOOPERTEXT’s character grouping module joins the candidate letters found by the char-

acter detector into text regions — which may be either words or text lines — according to

geometric criteria defined by Retornaz and Marcotegui [31]. These criteria take into ac-

count the heightsh1, h2 and widthsw1, w2 of the two bounding boxes, as well as the coor-

dinates(x1, y1) and(x2, y2) of their centers. See figure 9. Specifically, leth = min(h1, h2),

dx

dy

(x2, y2)
(x1, y1)

h1

h2

w2

w1

Figure 9: Geometric parameters used for letter grouping.

dx = |x1 − x2| − (w1 + w2)/2 anddy = |y1 − y2|. ⋆[The symbol hmin was used for a

parameter of the character detector.] Note thatdx is negative iff the two boxes overlap in

thex direction. Then the two boxes are said to becompatible— that is, assumed to belong

to the same text word or line — iff

|h1 − h2| < t1 h

dx < t2 h

dy < t3 h

wheret1, t2 andt3 are parameters of the module. The parametert2, in particular, determines

whether the groups will be words or text lines, whilet3 controls whether multiple lines are to

be merged into text blocks.
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These criteria are applied to all pairs of detected characters. The groups are the equiva-

lence classes of the transitive closure of this compatibility relation.

At this stage, letters that were not joined to any group are discarded. This requirement

normally eliminates a large fraction of the false positives(non-letter regions classified as let-

ters by the previous steps). Each group is then summarized bya single axis-aligned rectangle,

which is the bounding box of its component letters. See figure10.

Figure 10: Grouping letters into text words.

The grouping module is applied separately to the candidatesfound in each segmentation

(positive and negative). Then the two lists of candidate text regions are merged, and any two

regions that have significant overlap are fused into a singleregion. The overlap is considered

significant if⋆[If what? ].

3.3. Multi-scale processing

The segmentation and character/non-character recognition phases perform rather poorly

if used at a single scale. Text embedded in photos of urban scene may have characters of

widely different sizes and styles. Characters that are much larger than the structuring element

used in the morphological thresholding are often over-segmented. To overcome this problem,

those two steps described above are applied in a multi-scalefashion [32]. At each resolution

level, the segmentation is applied to a reduced version of the input image, with the goal

of detecting characters of a limited size range, and automatically ignoring small irrelevant

details of character shape and texture.

More precisely, for each imageI, SNOOPERTEXT first builds a multi-scaleimage pyramid

I
(0), I(1), . . . , I(m). The baseI(0) of the pyramid is the original imageI, and each levelI(l) is
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a copy of the next lower oneI(l−1), reduced to half its width and half its height (so that level

I
(l) has1/4l as many pixels as levelI

(0)). The maximum levelm depends on the size of the

original image and the minimum size of the characters to be detected.

The segmentation, character/non-character classification, and grouping⋆[grouping too?]

steps are applied separately to each level of the pyramid. Ateach level, the algorithm only

looks for letters whose areas lie in the range[Amin .. Amax], defined in section 3.1.2, which

corresponds to the size range[4lAmin .. 4lAmax] in the original image. The parametersAmin

andAmax are chosen so that there is some overlap between two consecutive scalesl andl+1,

namelyAmax > 4Amin. Similar considerations apply to the linear patameterhmin, hmax, wmin,

andwmax. Segmented regions whose area fall outside the interval[Amin .. Amax] are ignored,

since they are expected to be found at other scales. See figure11. One advantage of the multi-

scale approach is that we can use use a structuring element offixed (and modest) size in each

morphological operation, with significant speed gains. Note that the cost of processing the

whole image pyramid, for letters of any size, is only
∑l

i=0 1/4i ≈ 4/3 times the cost of

processing the original image for letters within the fixed ranges of section 3.1.2.

Another advantage of the multi-scale approach is that it makes the segmentation algorithm

insensitive to letter texture — high frequency details thatare much smaller than the letters

themselves. Those details may cause each letter to be split into several separate segments, and

will tend to confuse the the character/non-character classifier. With the multi-scale approach,

these problems are largely avoided when the segmentation procedure is applied the scale

where the letters are still legible but those finer details have been blurred away. See figure 12.

3.4. Text region validation module

The character detection module analyzes only the segmentedcharacter shapes in isolation,

and the character grouping module looks only at their bounding boxes. In order to obtain a
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Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Figure 11: Example of multiscale segmentation and letter detection, showing accepted candidate letters (left)

and accepted text lines (right) at each level.

good end-to-end recall score, these two modules must be tuned to accept a high rate of false

positives—regions that are mis-identified as characters and grouped into spurious text line

candidates. See figure 13. The task of SNOOPERTEXT’s region validation module is to weed

out these false positives, by analyzing the image content ofeach candidate text region as a
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Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Figure 12: Example of multiscale segmentation and letter detection, illustrating texture suppression at the proper

scale. Note that the letters of ‘SIGNO’ are oversegmented inlevels 0 and 1 but correctly segmented and recog-

nized (black boxes) in level 2.

whole.

This module is basically a texture classifier, based on the T-HOG descriptor [? ]. The

latter is a variant of Dalal and Triggs’s R-HOG descriptor [4], specialized to capture the
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Figure 13: Some examples of false positives found by the character detection and grouping modules.

gradient distribution characteristic of letter strokes inoccidental-like scripts. The T-HOG

descriptor is fed to an SVM classifier, whose output is thresholded to give a binary text/non-

text classification.

The T-HOG descriptor is based on the observation by Chen and Yuille (2004) that dif-

ferent parts of Ocidental-like text have distinctive distributions of edge directions [21]. That

is because images that consist of bi-level strokes (such as Roman letters), the orientations of

the strongest gradients tell the orientations of those strokes.

The HOG-based text/non-text discriminators reported in the literature generally use a

two-dimensional array ofnx × ny cells, as Dalal and Triggs first used for human body recog-

nition. [4] recognition. The resulting multi-hog descriptors, that are often complemented with

other statistics, typically have more than 100 features. See table 1

Descriptor Year nx × ny nb no N Notes

Pan et al. [25] 2008 2 × 7 = 14 ?? ?? 140 Line

Hanif and Prevost [24] 2009 ??×?? = 16 8 13 151 Line

Wang et al. [26] 2009 ??×?? = 8 8 2 80 Char/line

⋆[Add the rest!] ??? ??×?? =?? ?? ?? ?? ??

Table 1: Parameters of some HOG-based descriptors in the literature, showing the number of columns and rows

in the cell array (nx andny), of histogram bins (nb), of other features (no), and of total features (N ).

The use of a two-dimensional cell array may be justifiable forisolated characters, but does
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not seem to be useful for multi-character texts of variable width. In such texts, the gradient

distribution is largely independent of horizontal position; therefore, a cell layout with vertical

cuts increases the size of the descriptor without providingany additional relevant information.

The detailed description of the T-HOG descriptor and its experimental analysis have been

published separately [? ]. To obtain the descriptor, the imageI delimited by by the candidate

rectangle is first extracted, converted to grayscale, scaled to a fixed heightH, preserving its

aspect ratio, and normalized for local variations of brightness and contrast with a Gaussian

weight window. The sub-image is then divided into a small fixed numberny of horizontal

stripes, and a histogram withnb of bins is built for each stripe. Specificaly, the image gradient

is computed at each pixel within the stripe, its direction isquantized into a small numbernb

equal angular ranges, and the corresponding bins of the histogram are incremented. Opposite

directions are identified, so each bin isπ/nb radians wide. The T-HOG descriptor is the

concatenation of thoseny histograms. See figure 14. The contribution of each pixel to the

⋆[Provide the images and uncomment the tabular.]

Figure 14: Some candidate text images found by the characterdetection and grouping modules (left) and the

corresponding T-HOG descriptors (right), computed withny = ⋆[??] stripes andnb = ⋆[??] bins. Each round

diagram shows the histogram of gradient orientations in onehorizontal stripe of the candidate images. Each

pair of diametrally opposite black wedges represents a single bin of the histogram.

histogram is weighted by the gradient’s norm, so that the small gradients that result from

camera and quantization noise are largely ignored. Both the stripes and the histogram bins

have gradual boundaries in order to minimize the impact of small vertical shifts and rotations

of the text inside the bounding box.

Indeed, through extensive experiments [? ] we confirmed that, for any descriptor length,

the partition into horizontal stripes was generally more effective than a two-dimensional ar-

rangement. Moreover, near-optimal results could be obtained with fairly small descriptors:
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we are usingny = 7 andnb = 9 in SNOOPERTEXT, but if used insteadny = 5 andnb =??

we would reduce the descriptor size to ?? while lowering the scores by 1 to 2%⋆[Confirm! ].

We also found that pre-scaling the given text region to a small fixed heightH (currently

24 pixels) was more efective than computing the HOGs at the original resolution. We believe

that this resizing step is a good balance between preservation of useful detail and removal of

noise and spurious texture

4. Performance of the text detector

We compared the performance of SNOOPERTEXT with that of other text detectors pub-

lished in the literature, in their ability to locate text lines.

4.1. Image collections

For our tests, we used three image collections, described below. For each of these datasets

we have areference filecontaining the bounding boxes of its legible text regions and the

corresponding text contents, in a simple XML format. This data was obtained by human

inspection of the images (as opposed to human readout of the actual signs on the scene).

⋆[The term “ground truth” comes from the area of aerial image analysis and means

“data collected by an observer on the ground”, e. g. this areais actually corn field, this

road is paved, etc.. For iTowns that would be a human in the street reading the sig-

nage directly. However, for our datasets, the reference filewas derived from the images

themselves. In particular, text that is illegible or occluded in the images is not recorded

in those files. Therefore the term “ground truth” is inappropr iate and misleading. We

must call them “reference files” instead. Or perhaps “truth file”? Or “paragon file”? ]

1. ITW: a subset of the iTowns Project’s image collection [2], consisting of 100 unpro-

cessed frontal color photos of Parisian façades, with1080 × 1920 pixels, as taken by
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the iTowns vehicle. The reference file, containing848 readable text words, is available

on-line [33].

2. SVT: a public benchmark of 249 urban photos selected from the Google Street View

images by Wang et al., ranging from⋆[???]× ⋆[???] to ⋆[???]× ⋆[???] pixels. The the

reference file contains 647 readable words [? ].

3. EPS: the benchmark used by Epshtein et al [6], with307 color images of urban scenes,

ranging from1024 × 768 to 1024 × 1360 pixels, taken with hand-held cameras. The

reference file, containing1981 readable text lines, was provided by the authors [15]

and converted to XML by us [33].

4. ICD: the “testing” half of the 2005 ICDAR Challenge collection [16], consisting of

249 color images, ranging from307 × 93 to 1280 × 960 pixels, captured with various

digital cameras, of book covers, road signs, posters, etc. The reference file, containing

1107 readable text words, was provided by the Challenge organizers.

TheICD collection is not very appropriate for our purposes, since scanned texts are quite

different from photos of storefront signage in many ways (such as sharpness, brightness,

contrast, angle of view, font variety, and the frequency of occlusions). We included it because

it is a popular benchmark for text detection, and it is the only one for which we have reliable

data on the performance of other detectors.

4.2. Parameter settings

In all tests the SNOOPERTEXT parameters were set as follows:

⋆[Specify range ofcmin: [0 1] or {0.. 255}?]

The t2 parameter (maximum relative letter spacing) was set differently for each dataset

so that characters would be grouped in the same way as in the corresponding reference file:

namely, into words forITW andICD, and into lines for Ephstein
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Parameter ITW SVT EPS ICD

Character detection module

Min constrastcmin 8/256 ⋆[??] 12/256 8/256
Relative thresholdt 0.79
Min areaAmin (px2) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Max areaAmax (px2) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Min width wmin (px) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Max widthwmax (px) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Min heighthmin (px) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Max heighthmax (px) ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Min aspectrmin ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Max aspectrmax ⋆[??] ⋆[??] ⋆[??] ⋆[??]
Image pyramid heightm ⋆[??] ⋆[??] ⋆[??] ⋆[??]

Character grouping module

Max height differencet1 1.10
Max X separationt2 0.40 ⋆[??] 0.80 0.40
Max Y offsett3 0.70

Region validation module

Extracted image heightH (px) 24
Number of cellsny 7
Bins per histogramnb 9

Table 2: SNOOPERTEXT parameter settings used for each test dataset.

⋆[Confirm that the T-HOG paper specifies the normalization blur radius as a func-

tion of H.] The 63-feature T-HOG is an overkill: texts with≈ 20 features⋆[3×7 ?] resulted

in F -scores only1 to 2% lower than those reported below. The SVM of the region validation

module was trained with the true and false positives regionsreported by the character detec-

tion and grouping modules of SNOOPERTEXT, when applied to the “training” subset of the

ICD image dataset. The T-HOG SVM used a Gaussianχ2 kernel, whose standard deviation

was found by cross-validation.
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4.3. Competing detectors

We compared SNOOPERTEXT against several state-of-the-art text detectors described in

the literature. Specifically, we compared it with the contestants of the ICDAR Challenge [18],

and also with the detectors of Epshtein et al. [6], H. Chen et al. [14] and Yao et al [1]. (The

system of Mancas-Thillou and Gosselin [13] uses the text detector of Alex Chen, which is

included in our set.)

We added to our list of competing text detectors the front-end module of the popular

open-source TESSERACTOCR software (TESSFRONT), whose task is to locate the candidate

text regions in the input image before calling the back-end (TESSFRONT) to parse them.

TESSERACTis considered one of the best OCRs available today [5]; however, its front-end

was designed for scanned documents, and it usually reports alarge number of false positives

when applied to photos of 3D scenes. See figure 18 (top). Therefore, we also added to our

list of competing detectors the combination of TESSFRONT with the T-HOG as an output

filter (TESSFRONT+T-HOG). See figure 18 (bottom).

⋆[We want to publish SnooperText as open free software.]

4.4. Rectangle-based performance metrics

The quantitative criteria we used to compare these text detector systems are based on the

ICDAR 2005 measure of similarity [18] between two rectanglesr, s, defined as

m(r, s) =
A(r ∩ s)

A(r ∪ s)
(1)

whereA(t) is the area of the smallest rectangle enclosing the sett. The functionm(r, s)

ranges between0 (if the rectangles are disjoint) and1 (if they are identical). See figure The

functionm is extended to a set of rectanglesS by the formula

m(r, S) = max
s∈S

m(r, s) (2)
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Figure 15: The rectangle similarity scorem(r, s) for various text regionss detected by SNOOPERTEXT (solid

outlines) and the best-matching regionsr fron the reference file (dashed).

From this indicator one derives the ICDARprecisionP andrecall R scores [18],

P =

∑

r∈E

m(r, T )

#E
R =

∑

r∈T

m(r, E)

#T
(3)

whereT is the set of rectangles in the reference file, andE is the set of rectangles reported

by the detector.

For ranking purposes, the ICDAR 2005 Committee used theF -measure[18], which is

the harmonic mean of precision and recall:F = 2/(1/P + 1/R).

4.5. Computing average scores

There are several ways of averaging theP , R, andF scores over a multi-image database.

The approach used by the ICDAR 2005 scoring program (method I)is to evaluateP,R and

F separately for each image, and then compute the arithmetic mean of all three scores over

all images. Another approach (method II) is to computeP andR for each image, then take
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the arithmetic means of allP andR values, and computeF from these means. Yet another

approach (method III) is to compute the precision and recallformulas ( 3) by takingE and

T as the union of all text regions in all images. We note that averaging method I suffers

from higher sampling noise and a negative bias compared to the other two, because it gives

equal weight to each image irrespective of the number of recoverable text objects in it and

theF -score is a non-linear function of theP andR rates. In particular, the averagedF score

tends to be lower than the harmonic mean of averagedP andR.

This point must be considered when comparingF values reported by different authors,

since it is not always clear how they were averaged. Therefore, for our comparisons we

recomputed the overalF score ourselves, for all detectors, from the reported global P andR

scores (method II). We could not use method III because, for most cmpetitors, the required

data (the set of rectangles detected in each image) was not available.

4.6. Results of text detection evaluation

The text detection scores on the three image collections areshown in tables 3–6. For most

text detectors, neither the program nor the detected regions were available; therefore, we had

to rely on the scores reported by the authors.

Detection scores

System P R F

SNOOPERTEXT 0.72 0.50 0.59
TESSFRONT+T-HOG 0.30 0.13 0.18

TESSFRONT 0.05 0.15 0.07

Table 3: Text detection scores of SNOOPERTEXT and other detectors on theITW dataset.

⋆[The F -score of Yi et al. was recomputed accoding to averging method II in order

to match the other entries; reported 0.66 (method I?).]
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Detection scores

System P R F

SNOOPERTEXT 0.36 0.51 0.42
Neumannet al. [? ] 0.19 0.33 0.26

TESSFRONT + T-HOG 0.15 0.15 0.15
TESSFRONT 0.04 0.18 0.06

Table 4: Text detection scores of SNOOPERTEXT and other detectors on theSVTdataset.

Detection scores

System P R F

SNOOPERTEXT 0.59 0.47 0.52
Epshteinet al. [6] 0.54 0.42 0.47

TESSFRONT+T-HOG 0.21 0.10 0.13
TESSFRONT 0.02 0.14 0.04

Table 5: Text detection scores of SNOOPERTEXT and other detectors on theEPSdataset.

4.7. Discussion

As can be seen in tables 3–6, the performance of SNOOPERTEXT is equal to that of the

best detectors described in the literature, and much betterthan that of TESSFRONT (which

was not designed for photos of outdoor scenes). Filtering the output of TESSFRONT through

our text region validation module significantly improved its precision with little loss of recall.

Note, in table??, that SNOOPERTEXT outperformed the Stroke Width Transform (SWT) [6]

of Epshtein et al. on their own dataset.

5. End-to-end performance

We also measured the correctness of the strings extracted from the SNOOPERTEXT-

detected regions by the OCR algorithm used in the iTowns application. Although the latter
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Detection scores

System P R F

Yi et al. [? ] 0.73 0.67 0.70
Panet al. [? ] 0.67 0.70 0.69

SNOOPERTEXT 0.73 0.61 0.67
Yaoet al. [1] 0.69 0.66 0.67

H. Chenet al. [14] 0.73 0.60 0.66
Epshteinet al. [6] 0.73 0.60 0.66
Hinnerk Becker† 0.62 0.67 0.64

Alex Chen† 0.60 0.60 0.60
Ashida† 0.55 0.46 0.50

HWDavid† 0.44 0.46 0.45
Wolf† 0.30 0.44 0.36

Qiang Zhu† 0.33 0.40 0.36
TESSFRONT+T-HOG 0.35 0.27 0.30

Jisoo Kim† 0.22 0.28 0.25
Nobuo Ezaki† 0.18 0.36 0.24
TESSFRONT 0.18 0.29 0.22

Todoran† 0.19 0.18 0.19

Table 6: Text detection scores of SNOOPERTEXT and other detectors on theICD dataset. The competitors of

the ICDAR 2003 and 2005 challenges are marked with†.

is not part of SNOOPERTEXT, we felt that this evaluation was necessary to confirm that the

detector was adequate for the task (for example, that the text bounding boxes are neither too

small or too large).

For these tests, we used TESSERACT’s back-end (TESSBACK), the module that attempts

to parse the strings supposedly contained in the regions identified by the front-end.

We could not compare SNOOPERTEXT to the text detectors described in the literature

(see section 4.3), since the implementations were not available and the authors did not report

their OCR performance. Therefore, we considered only three alternative algorithms, namely:
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the “perfect” detector (IDEAL), that returns the manually annotated text regions from the

reference file; TESSERACT’s front-end module (TESSFRONT); and that same module with its

output filtered by SNOOPERTEXT’s region validation module (TESSFRONT+T-HOG). See

figure 19 (top).

5.0.1. OCR-based performance metrics

For these comparisons, we used two scoring functions that take into account the cor-

rectness of the OCR-extracted text. Both functions assume thatthe strings are converted to

lower case, because it is often impossible to tell whether a text (for example, “COW’S VOX

UVWXZ” ⋆[better example?]) in urban signage is in upper or lower case.

We assume that the OCR algorithm attaches the extracted text,denoted byr.ocr , to the

given rectangler. We define therigorous OCR similarity scorem′ for two rectanglesr ands

as

m′(r, s) =







1 if m(r, s) ≥ λ and r.ocr = s.ocr

0 otherwise
(4)

wherem is the rectangle similarity function defined in equation (1), andλ is a fixed threshold

(0.2 in our tests).

The scoring functionm′ may be considered too rigorous, because at the current stateof

the art one cannot expect that an OCR algorithm will correctlyread store and product names

which are missing from its spell-checking dictionary. Therefore, we also defined atolerant

OCR similarity scorem′′ that gives credit for partially correct OCR readings; namely,

m′′(r, s) =







1 −
dist(r.ocr , s.ocr)

max(|r.ocr |, |s.ocr |)
if m(r, s) ≥ λ

0 otherwise
(5)

Here |u| denotes the length of stringu, anddist denotes the Levenshtein distance between

strings [34]. The latter is defined as the minimum number of edit operations needed to trans-

form one string into the other, where each operation is the insertion, deletion, or substitution
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of a single character. Since the Levenshtein distance does not exceed the length of the longest

string, the metricm′′(r, s) ranges between0 (when the strings have no letters in common) and

1 (when the strings are equal).

As in section 4.4, we extend the scoring functionm′ to a set of OCR-scanned rectangles

S by the formula

m′(r, S) = max
s∈S

m′(r, s) (6)

We then define therigorous OCR performance scoresP ′ (precision) andR′ (recall) by the

formulas

P ′ =

∑

r∈E

m′(r, T )

#E
R′ =

∑

r∈T

m′(r, E)

#T
(7)

whereT is the set of manually identified text regions in all input images, with theocr fields

set to the visually extracted text values, as recorded in thereference file; andE is the set of

text regions reported by the detector, with the TESSBACK-computedocr fields. As before,

we combine the OCR precision and recall into a single OCR scoreF ′ = 2/(1/P ′ + 1/R′).

Thetolerant OCR performance scoresP ′′ R′′, andF ′′ are defined in the same way, usingm′′

instead ofm′ in formulas (6–7).

Figure?? illustrates the metricsm (equation 1),m′ (equation 4) andm′′ (equation 5) on

some text regions reported by SNOOPERTEXT.

⋆[Split into two figures, RECT and OCR?] ⋆[Too many exaamples!]

5.1. Results of OCR correctness evaluation

5.2. Discussion

Table 7 shows that the rigorous OCR scoreF ′ of SNOOPERTEXT on theITW dataset

(20%), while low in absolute terms is68% of the score obtained with IDEAL text detector,

(29%). The tolerant OCR scoreF ′′ of SNOOPERTEXT (40%) is 80% of the IDEAL score

(50%). In both aspects, SNOOPERTEXT is significantly better that TESSERACT’s front end,
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Figure 16: The OCR similarity scoresm′(r, s) andm′′(r, s) for ⋆[check namesr, s] various text regionsr

extracted by SNOOPERTEXT+TESSBACK (solid outlines), and the best-matching regionss from the human-

produced reference file (dashed).

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.29 0.29 0.29 0.50 0.50 0.50
SNOOPERTEXT 0.22 0.18 0.20 0.43 0.37 0.40

TESSFRONT + T-HOG 0.28 0.03 0.06 0.45 0.07 0.12
TESSFRONT 0.01 0.05 0.01 0.01 0.10 0.03

Table 7: OCR performance scores of the TESSERACTback-end with the three text detectors on theITW dataset.

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.22 0.22 0.22 0.40 0.40 0.40
SNOOPERTEXT 0.13 0.20 0.16 0.21 0.34 0.26

Neumannet al. [? ]
TESSFRONT + T-HOG 0.46 0.06 0.11 0.57 0.11 0.18

TESSFRONT 0.01 0.07 0.02 0.01 0.12 0.02

Table 8: OCR performance scores of the TESSERACTback-end with the three text detectors on theSVTdataset.
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OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.10 0.10 0.10 0.25 0.25 0.25
SNOOPERTEXT 0.06 0.05 0.05 0.24 0.18 0.21

TESSFRONT + T-HOG 0.24 0.01 0.01 0.38 0.03 0.06
TESSFRONT 0.00 0.01 0.00 0.01 0.04 0.01

Table 9: OCR performance scores of the TESSERACTback-end with the three text detectors on theEPSdataset.

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.44 0.44 0.44 0.55 0.55 0.55
SNOOPERTEXT 0.41 0.29 0.34 0.57 0.42 0.49

TESSFRONT + T-HOG 0.58 0.12 0.19 0.75 0.17 0.28
TESSFRONT 0.04 0.16 0.06 0.05 0.22 0.08

Table 10: OCR performance scores of the TESSERACTback-end with the three text detectors on theICD

dataset.

even when the latter is combined with the T-HOG validation module. Therefore, we can say

that the OCR algorithm, not the text detector, is the main bottleneck of the iTowns system at

present.

Note that the OCR precision scoresP ′ andP ′′ of SNOOPERTEXT are close to (or even

better than) those of the IDEAL text detector, because regions in the refererence file that are

difficult for TESSBACK tend to be missed by SNOOPERTEXT. See figure 17.

The low OCR scores on theEPSdataset (table??), even with the IDEAL text detector, are

partly explained by the lower image quality and the smaller size of the texts included in its

reference file, which even humans find hard to read. See figure 20. Indeed, 252 text regions
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Figure 17: Examples of tougher text regions for text detectors and OCRs. Samples from theITW andEPSs

datasets.

(about13%) in the reference file do not even have a string annotation, and therefore will be

counted as errors even with an ideal OCR algorithm.

On theITW andEPSdatasets⋆[confirm datasets], most of SNOOPERTEXT errors seem

to be due to texts that are near the low limit of legibility (small in size, blurred, partly ob-

scured by noise) and to groups of two or more characters that cannot be separated by the

segmentation phase.

The OCR precision scoresP ′ andP ′′ of SNOOPERTEXT+TESSBACK are comparable to

those of IDEAL+TESSBACK chiefly because⋆[what?] See figure??.

6. Geographic Information System

⋆[In a journal paper it is not appropriate to describe work that is only planned or

tentative. Thus we must be careful to describe only those parts of the iTowns system

that are reasonably stable and have been deployed — specifically, the version that is

available to outside users.]

⋆[We must specify the size of the system, current and planned: cities and neigh-

borhoods covered, number of cars, length of streets covered, number of pictures taken,

number of strings in the database. If possible, give the present, planned, and per-day

numbers.]

⋆[Since the goal is to help users, not demonstrate SNOOPERTEXT , there should be

manual filtering of the extracted strings. Signs like OPEN orSALE, or text extracted
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Figure 18: Examples of the TESSFRONT detector output (top) and TESSFRONT with T-HOG post filter (bot-

tom). At left, the input image with the detected regions highlighted. At right the OCR (TESSBACK) output for

those text regions.
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Reference text regions TESSBACK
H3
MONTE
CHARGE
CAFFE
TE5
FRANCO
ITALIENNES
WI!
WE

SNOOPERTEXT TESSBACK
H3
MONTE
CHARGE
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TE5
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Figure 19: Examples of the reference text regions (top) and the SNOOPERTEXT detection (bottom). At left, a

crop of the input image with the detected regions highlighted. At right the OCR (TESSBACK) output for those

text regions. The correct readings of the reference regionsare: “143”, “MONTE”, “CHARGE” (2x), “CAFFE”

(2x), “TES”, “FRANCO” and ”ITALIENNES”.

from trucks and people’s T-shirts would be worse than useless. Ditto for gross errors or
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Figure 20: Examples of text regions in theEPSreference file without textual annotation.

truncated words. Also, it would be desirable to tag each textwith basic attributes such

a “store name” (RED ROSE RESTAURANT ), “product/service” (F ISH BAIT ), “telephone

number”, “operational information” (H OME DELIVERY ), “marketing hype” (B ETTER

THAN APPLE PIE ), etc. Is any such filtering/tagging being done?]

⋆[Also I expect that the strings extracted by SNOOPERTEXT will be merged with

other sources of text annotations such as existing street directories. Is that the case?]

⋆[Also I expect that there will be some supervision of the imagestitching procedure

to avoid gross errors due to moving objects and the like.]

⋆[From the examples given earlier, one may assume that SNOOPERTEXT is applied

to every raw image acquired by every camera in the car. However, that would require

matching and merging the extracted strings, removing duplicates, and obtaining suffi-

ciently accurate street address and/or GPS coordinates of each string. Does not seem a

simple task, even with human assistance. So my guess is that,for the iTowns database,

SNOOPERTEXT is run only on the “frontal” images (taken by the cameras thatpoint 90

degrees to the road axis), and only after those images have been stitched into mosaics

spanning entire city blocks, from one street intersection to the next (so that every sore

name is entirely in one image, and its address and coordinates can be easily computed

from its position on the image). Is this guess correct?]

The iTowns: project [2] has two main goals: (1) allowing a user to navigate freely within

the image city flow (mosaic of pictures assembled into a complete immersive panorama); (2)

extracting features automatically from this image flow to automatically enhance cartographic
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databases and to allow the user to make high level queries on them (as for example, go

to a given address, generate relevant hybrid text-image navigation maps (itinerary), find the

location of an orphan image, select the images that contain an object, etc). The city images are

processed offline to extract as many semantic data as possible and the cartographic databases

are enhanced with these data.

The textual information is extracted by the SNOOPERTEXT and the TESSERACTOCR

and stored. Thus, each image is represented by a set of words (strings). The user can then

makes textual queries to retrieve images semantically relevant to him. The text query is

then matched against each word of the database, by computingthe Levenshtein distance.

Both OCR metrics discussed in the experiments can be used here.Each image containing a

(partial) matching word is considered as relevant to the query. The figure 21 shows other two

different city locations for the same textual query “sushi”shown in figure 2.

Figure 21: City locations of a search for the query string “sushi” through the iTowns user interface. The textual

information was extracted with SNOOPERTEXT and TESSBACK.

7. Conclusions

The combination of our SNOOPERTEXT detector with a standard OCR algorithm (TESSBACK)

is being effectively used in the iTowns project to extract store signage and other textual infor-

mation from photos building faades. These strings make it possible for iTowns users to locate
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stores by textual queries on store names and products. On a sample of the iTowns images,

SNOOPERTEXT was able to accurately locate about50% of the legible text regions, with less

than30% of false positives.

We attribute SNOOPERTEXT’s success mainly to the use of multi-scale processing for

segmentation an character detection, and to its effective text region validation module based

on the T-HOG descriptor.

At present, the weakest spot in the iTowns text extraction system is the OCR algorithm,

that yields the correct string only30% of the time even when provided with an accurate

bounding box. For this reason, the end-to-end recall score of the system (SNOOPERTEXT

plus TESSBACK) is only18%, with 22% precision.

SNOOPERTEXT can also accurately locate60% of the text regions present the ICDAR

Challenge benchmark, with less than30% false positives. It is therefore competitive with

state-of-the-art text detectors.

For photos of urban scenes SNOOPERTEXT is also significantly better than TESSERACT’s

built-in text detector, that achieves only15% recall with and5% precision (or30% precision

if combined with SNOOPERTEXT’s T-HOG-based validator.)
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