General Algorithms
for Multiscale Approximation

Gilcélia Regiane de Souza'® and Jorge Stolfi>

YUFSJT - Rodévia MG 443 - km 7, Ouro Branco/MG CEP: 36420-00.
2UNICAMP - Instituto de Computagdo - Av. Albert Einstein, 1251 Cidade Universitria, Campinas/SP - Brasil CEP
13083-852

Vgilcelia@ufsj.edu.br
Dstolfi@ic.unicamp.br

Abstract. We describe efficient algorithms for adaptive multiscale approximation of functions that are sampled with uneven density
and/or have important small-scale detail limited to small portions of their domain. Our algorithm constructs the approximation from
the top down, using a special least squares fitting of the residual at each level, followed by a basis reduction procedure to discard
elements that contribute very little to the approximation. An important feature of these algorithms is their generality, since they are
independent of domain dimension and shape, mesh, and approximation basis. Another important feature is that they do not need to
generate the full basis at each level.

INTRODUCTION

In this paper we describe efficient algorithms for adaptive multiscale approximation of functions that are heteroge-
neous — that are sampled with uneven density and/or have important small-scale detail limited to small portions
of their domain. Such functions and datasets are very common in natural sciences and engineering, where different
physical causes often give rise to effects with very different scales.

We assume that the function to be approximated (the farget function) is nominally defined on some multi-
dimensional domain D C R, but is known only at a finite number of sampling points p = (p1, pa, ..., ps) in that
domain. Every element of our approximation bases is assumed to be some continuous function with relatively small
support, sampled at the same points of the domain as the target function itself.

A single-scale basis has linearly independent elements with supports of similar size, that cover the domain. A
full multiscale basis is a hierarchy of single-scale bases, whose elements have progressively smaller supports and are
arranged more densely over the domain. An adaptive multiscale basis is a subset of a full one, excluding elements
that contribute very little to the approximation. The resulting basis has higher flexibility in those parts of the domain
where the target function has more small-scale detail and/or is sampled more densely. In many problems, an adequate
adaptive basis may be orders of magnitude smaller than a full multiscale basis with the same accuracy.

Contributions: The main contributions of this paper are three algorithms:

(a) Analyze: a heuristic procedure to find a subset of the domain where the target function admits a good approxi-
mation with a given basis, and said approximation;

(b) Reduce: a procedure exclude basis elements from an approximation without increasing the approximation error
beyond a given tolerance;

(c) HApp: a procedure that efficiently constructs an adaptive multiscale basis, with prescribed error tolerance, in
top-down fashion.

An important feature of our algorithms is that they are very general, independent of domain shape and dimension,
mesh, and approximation basis. They require only very loose conditions on the mesh and base hierarchy. Another
important feature is their efficiency, both in terms of computation time and final basis size, for functions that are

amenable to adaptive approximation. This efficiency is achieved by original basis reduction heuristics and by a top-
down construction that uses only a subset of the full basis at each level.

The procedures Analyze and Reduce are omitted from this extended abstract for lack of space. The basic ideas
of Analyze and a detailed description of Reduce are available as a technical report [1]. That report also presents some
empirical tests of HApp with various target functions and a specific hierarchical mesh.

Related work: A general introduction to approximation theory is provided by the book of Hammerlin and Hoff-
mann [2]. The main algorithms (HApp, Reduce, and Analyze) proposed in this paper are improved versions of the
algorithms developed in the Ph. D. Thesis of the first author [3]. The HApp procedure was inspired by the algorithms
of Armin Iske and others for adaptive multiscale scattered data approximation [4, 5, 6, 7, 8], but tries to be as inde-
pendent as possible from the specifics of mesh topology, basis functions, and sampling grid. It fits in the broader area
of multiscale adaptive approximation [9, 10, 11, 12, 13, 14, 15, 16].

OVERVIEW OF THE METHOD

We assume that a function (or basis element) is represented as vectors in R, where element i is the value of the func-
tion on sampling point p;. The approximation space is a linear subspace S or RY. An instance of the approximation
problem is then target vector, f in RV, representing the function to be approximated. A solution for that instance is a
vector s from S, such that the pair (f, s) satisfies some specified approximation criterion. The residual is the difference
e=f-seRV,

We will assume that the space S is defined by a basis matrix S, with N X n entries, such that S ;; is the value of the
basis element with index j on the sampling point p;, fori € {1,---,N}and j € {1, - - -, n}. Therefore, the approximation
s can be written as s = S @ where a = (a1, a3, - -, @,) is a (column) vector of n real coeflicients.

We use the notations ;. and S .; for row i and column j of a matrix S. We also denote by §;; the submatrix of S
consisting of the lines whith indices in the set / € N and the columns with indices in the set J/ € N.

Multiscale approximation: Our multiscale adaptive approximation procedure HApp (Algorithm 1) uses a hierar-
chical basis, a sequence S () = (§ lmin) | §EmintD) g Umax)y of approximation bases, the levels, with increasing spatial
resolution at each level. Each basis S) defines an approximation space S,

In many multiscale approximation schemes [13], the spaces S and S® of different levels are required to be
linearly independent, or even orthogonal. We make the opposite that assumption, namely that

S(fmin) - S([min"'l) C... s C S([max))' (1)

The main advantage of using nesting (or near-nesting) spaces S*) is that accidental omission of an element from the
pre-basis 5© of each level can be corrected at the subsequent levels.

Element cells and the hierarchical mesh: We assume that each element S (f) of each basis level S has an as-
sociated cell K;f), a subset of the point indices {1,2,..., N} (that is, of the row indices of §) where that element
dominates in some sense. We will denote by K the mesh of level ¢, defined as the set of all cells of level £. The list
K® = (KGmin) KEmin*tD) - Kma)Y is the hierarchical mesh.

The HApp algorithm does not impose any restriction on these cells of any single level £, except that every
sampling point must be contained in exactly one cell. The algorithm also assumes that the cells of successive levels
are properly nested; that is, for all 7, j, and ¢, cell Kf[”) is either disjoint of cell K;Z), or is contained in it. The children
of a cell KEZ) are all the cells K,(.[H) of the next level that are contained in it.

The support of a basis element S (f) is the set supp(S (f)) of cells of level £ where element § (f) is non-zero. We

assume that the cell K;.f), in particular, belongs to supp(S f?).

THE MULTISCALE APPROXIMATION ALGORITHM

Our hierarchical approximation algorithm is described more precisely by the procedure HApp below.
In typical situations, constructing the full hierarchical basis S would be probabively expensive. Therefore,
HApp performs a sequence of single-scale approximations, one per level, starting at each level with a pre-basis S, a

subset of the full basis S©, that includes only those elements that cover those parts of the domain where the uniform
norm of that residual £ is still too large.

At each level, HApp finds a small basis S© € S© that provides a sufficiently good approximation 5 to the
level’s target function f(, at least over the part of the domain in where such a good approximation exists. The
residual f© -5 of that approximation becomes the target f*!) at the next finer scale. Thus, the approximations s’
obtained at all levels must be added together to obtain the final approximation s.

Ideally, S should be the smallest subset of S that provides the desired accuracy. That goal would be too
expensive to achieve, however; so HApp uses a heuristic method that is not overly expensive and has been shown to
produce reasonably small bases, even if not the minimum ones. Namely, it first computes an initial approximation 5
in the space of the pre-basis SO, by the auxiliary procedure Analyze, a robust non-linear variant of the least-squares
method that ignores outlier values and regions of the domain where the function cannot be well approximated. It then
uses the auxiliary procedure Reduce to remove from the basis S all elements that make a negligible contribution to
5, obtaining a reduced basis matrix S and the corresponding reduced coefficient vector a®.

Besides the sampled target function f (a vector of RM), the indices €umin, fmax Of the first and last basis levels to
use, and the error tolerance €y, > 0, the HApp algorithm requires the following procedural parameters:

o GetAllCells(¢) that returns the indices of all cells (that is, elements of the full basis) of a given level ¢;
e GetChildrenCells(C, j) that returns a list of the indices r all children cells Kﬁ“l) of a given cell K&Z) ;

e GetElement({, j) that computes the element S (f) of the discrete basis S ©;
o GetSupportCells({, j) that returns the support of element Sff), that is, a list of all indices r of the cells K,(.[) of
level ¢ that contain at least one sampling point where element S (f) is nonzero; and

e GetRelevantElements(¢, j) that returns the list of all indices » of elements S (f) of level ¢ whose support includes
the cell K;[).

The procedures GetAllCells, GetChildrenCells, GetElement, GetSupportCells, and GetRelevantElements depend on
the application; specifically on the mesh hierarchy and on the hierarchical basis. If the cells in each level are a regular
tessellation of D, the arguments GetSupportCells and GetRelevantElements are usually the same procedure.

The outputs of HApp are the side-by-side concatenation S = § nin) y §nin+1) 1y §lns) of the reduced bases S ©;
the-top-to bottom concatenation @*) = @'‘mn) T gtmn*D) T ... T %) of the corresponding coefficient vectors; and the
computed approximation 5t = §g®).

In steps 7 and 8 of each iteration, this algorithm identifies the set C* of critical cells, where the current residual
f([) exceeds the tolerance €,,. Those cells must be children of a certain set M~ of modifiable cells identified in
the previous iteration. In step 10 the algorithm builds the set B of all basis cells whose elements have supports that
intersect cells of C). In step 14, the algorithm builds a pre-basis S with the elements of the full basis S © associated
to each basis cell. Note that the support of each element may overlap other cells, but is contained in | J M.

In steps 15— 18, procedures Analyze and Reduce are used to find a reduced approximation of the current target
funtion f©, which is added to the partial approximation 5. The new residual 2© = f© — 75 will be the target for
the next iteration.

Observe that C ¢ B ¢ M® ¢ U, for each level £ > €yyy. It can be proved by induction on ¢ that, for every
sampling point p;, (1) if p; & UM, then |el”] < €naxs (2) if p; & UM, then 5 = 0; (3) YU € YU D. (The
sets U¥) are defined only for the purpose of analysis and correcness, and may be omitted in actual implementations.)

The algorithm may end before reaching level £, if the set of critical cells C') becomes empty (step 9); in that
case, we will have H f (‘q)HO0 < €max. as desired. If the full space S =) at the last level can interpolate any target function,

then H f(f)”m < €max Will hold in any case.

Algorithm 1 Procedure HApp(f, Cuin» Cmax»> €Emax»
GetAllCells, GetChildrenCells, GetElement,
GetSupportCells, GetRelevantElements)

MGnin=D) GetAllCells(bmin — 1);

Ullnin=D) Mmin=D:

§Wi e 0:a « 0:5) O

Sin=D) £

For € = €, €min + 1, . . ., €inax, doO:

6. fO D,

7. CO « U jemtmin-v GetChildrenCells(f — 1, j);

8. Remove from C¥) every cell X such that | fl.([)| < €max for all i € X.
9. IfC® = {}, go to step 19.

10. BO = jeco GetRelevantElements(C, j)

11. MO — U epo GetSupportCells(¢, j)

12. U9 « Y jemo GetRelevantElements(¢, j);

13. U9 « | jeun GetSupportCells(L, j);

14. For each j € C, set §ff,> — GetElement(¢, j).

15. 50,39y — Analyze(£f©, 5O, enax)

16. (S©, a0 — Reduce(S©, a9, 20, €nax);

17. 50 « zka*k“?f,f);?f) — f([) -0,

18. §™ «— §M SO GM G TFO; 5 5 4+ 50,

19. Return S®, @™, 5%,

M NS

COMPUTATIONAL COMPLEXITY

Note that only a subset S of the full basis S © is computed in step 14 of HApp; namely, only the columns j whose
cells are in B, and only for those points p; such that i € | JM“~D). These algorithms are most efficient (both in the
running time and in the size of the final adaptive basis) if the basis elements have small support.

Significant savings in computing time are possible, if the sampling points form a regular rectangular grid, and
the basis elements of each level £ are copies of the same “mother element” translated by multiples of the grid spacing.
Then only one column of the basis matrix needs to be computed, since the other columns will be just permutations of
it. Ditto for the matrix M of the least squares method. [3].

The total cost of HApp will be dominated by the cost of Analyze in each level, which is at most proportional to
70 = @9)? log@“P)(q® +7'®), where ¢'¥ is the average number of sampling points in the support of each element
of the pre basis S©. The total time then is at most proportional to 7 = Zgj‘gmm 70,

In contrast, if we used the single-level basis of level S ‘), the cost would be #‘») where 19 = (n©)?(¢'© + n'?)
and ¢\ is the average number of sampling points in the support of an element of S mx), For target functions that are
amenable to adaptive multiscale approximation, this cost can be thousands of times the cost of HApp.

ACKNOWLEDGMENTS

This research was partially supported by CNPq (grant 310706/2015-7).

(1]
(2]
(3]

(4]
(5]
(6]
(71

(8]

[12]
[13]

[14]

[15]

[16]

REFERENCES

G. R. de Souza and J. Stolfi, “Adaptive multiscale function approximation I: General discrete bases,” Tech.
Rep. IC-15-08 (Institute of Computing, UNICAMP, 2016).

G. Hammerlin and K. H. Hoffmann, Numerical Mathematics (Springer, 1991).

G. R. de Souza, “Aproximacio de fungdes irregularmente amostradas com bases hierarquicas adaptativas de
elementos tensoriais compactos,” Ph.D. thesis, Institute of Mathematics, Statistics and Scientific Computing
(IMECC), State University of Campinas (UNICAMP), BrazilOctober 2013, advisor: Jorge Stolfi.

A. Iske, Multiresolution Methods in Scattered Data Modelling (Springer, 2000).

A. Iske and J. Levesley, Numerical Algorithms 39, 187-198 (2005).

M. S. Floater and A. Iske, Journal of Computational and Applied Mathematics 73, 65-78 (1996).

A. Iske, “Hierarchical scattered data filtering for multilevel interpolation schemes,” in Proc. of the 2000
Conference on Mathematical Methods for Curves and Surfaces, edited by T. Lyche and L. L. Schumaker
(2000), pp. 211-220.

M. S. Floater and A. Iske, “Multistep scattered data interpolation using compactly supported radial basis
functions,” in Proc. of the 2000 Conference on Mathematical Methods for Curves and Surfaces, edited by
T. Lyche and L. L. Schumaker (2000), pp. 211-220.

F. J. Narcowich, R. Schaback, and J. D. Ward, Approximations Theory 7, 1-9 (1995).

G. E. Fasshauer, Interdisciplinary Mathematical Sciences 6 (2007).

M. K. Kaibara, Andlise de Multiresolucdo para Leis de Conservacdo em Malhas Adaptativas, Master’s the-
sis, Institute of Mathematics, Statistics, and Scientific Computing (IMECC), State University of Campinas
(UNICAMP), BrazilMarch (2000).

S. Lee, G. Wolberg, and S. Y. Shin, IEEE Transactions on Visualization and Computer Graphics 3, 228-244
(1997).

S. Miiller, Adaptive Multiscale Schemes for Conservation Laws, Lectures Notes in Computational Science
and Engineering, Vol. 27 (Springer, 2003).

D. A. Castro, Multilevel Approximation Schemes and Applications, Master’s thesis, Institute of Mathematics,
Statistics, and Scientific Computing (IMECC), State University of Campinas (UNICAMP), BrazilDecember
(2011).

C. G. S. Cardoso, M. C. Cunha, A. Gomide, D. J. Schiozer, and J. Stolfi, Mathematics and Computers in
Simulation 73, 87-104 (2006).

M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, ESAIM Proceedings 34, 1-98 (2011).

